【题目】操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A、P两点间的距离为x.
探究:
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.
【答案】(1)、PQ=PB;证明过程见解析;(2)、y=(0≤x<);(3)、x=0或1.
【解析】试题分析:(1)、过点P作MN∥BC,分别交AB、CD于点M、N,则四边形AMND和四边形BCNM都是矩形,△AMP和△CNP都是等腰三角形,得出NP=NC=MB,从而证明△QNP≌△PMB,从而得出答案;(2)、设AP=x,则M=MP=NQ=DN=x,BM=PN=CN=1-x,根据题意得出△PBC和△PCQ的面积,然后得出y与x的函数关系式;(3)、本题分三种情况进行讨论,即①当点Q在边DC上;②当点Q在边DC的延长线上;③当点Q与C点重合.
试题解析:(1)、过点P作MN∥BC,分别交AB、CD于点M、N,则四边形AMND和四边形BCNM都是矩形,
△AMP和△CNP都是等腰三角形(如图1),∴NP=NC=MB.
∵∠BPQ=90°∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°∴∠QPN=∠PBM.
又∵∠QNP=∠PMB=90°∴△QNP≌△PMB(ASA),∴PQ=PB.
(2)、由(1)知△QNP≌△PMB,得NQ=MP.
设AP=x,∴AM=MP=NQ=DN=x,BM=PN=CN=1-x ∴CQ=CD-DQ=1-2×x=1-x
∴S△PBC=BCBM=×1×(1-x)=-x,
S△PCQ=CQPN=×(1-x)(1-x)=,
∴S四边形PBCQ=S△PBC+S△PCQ=, 即y=(0≤x<).
(3)、△PCQ可能成为等腰三角形.
①当点Q在边DC上,由得:
解得x1=0,x2=(舍去);
②当点Q在边DC的延长线上(如图2),由PC=CQ得:-x=x-1,
解得x=1.
③当点Q与C点重合,△PCQ不存在.
综上所述,x=0或1时,△PCQ为等腰三角形
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和点B,交y轴于点C(0,2)
(1)求抛物线的表达式;
(2)点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若不存在,请说明理由;若存在,求出点P的坐标;
(3)点D坐标为(1,﹣1),连接AD,将线段AD绕平面内某一点旋转180度得线段MN(点M、N分别与点A、D对应),使点M、N都在抛物线上,求点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=-+b(b>0,b为常数)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴交于点C,与y轴正半轴相交于点D.
(1)若直线AB与⊙O相切于弧CD上一点,求b的值;
(2)若直线AB与⊙O有两个交点F、G.
①b为何值时,⊙O上有且只有3个点到直线AB的距离为2?并求出此时直线被⊙O所截的弦FG的长;
②是否存在这样的b,使得∠GOF=90°?若存在,求出b的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以四边形的边、、、为斜边分别向外侧作等腰直角三角形,直角顶点分别为、、、,顺次连结这四个点,得四边形.
(1)如图1,当四边形为矩形时,请判断四边形的形状(不要求证明).
(2)如图2,当四边形为一般平行四边形时,设
①试用含的代数式表示,写出解答过程;
②求证:,并判断四边形是什么四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干个小立方块搭成一个几何体,使它从正面看与从左面看都是如图的同一个图.通过实际操作,并与同学们讨论,解决下列问题:
(1)所需要的小立方块的个数是多少?你能找出几种?
(2)画出所需个数最少和所需个数最多的几何体从上面看到的图,并在小正方形里注明在该位置上小立方块的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com