精英家教网 > 初中数学 > 题目详情

如图①,为等边三角形,周长为p.分别是三边的中点,连结,可得

(1)用p表示的周长是         

(2)当分别是三边的中点,如图②,则的周长是_______;(用含p的式子表示)

(3)按照上述思路探索下去,当分别是三边的中点时(为正整数), 的周长是               .(用含n、p的式子表示)

 

【答案】

(1)根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长×=p;

(2)第三个三角形的周长为=△ABC的周长××=;

(3)第n个三角形的周长=

【解析】根据三角形的中位线定理建立周长之间的关系,按规律求解.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,OE∥AB交BC于点E,OF∥AC交BC于点F,图中等腰三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D为△ABC内一点,△ABD逆时针旋转后到达△ACP位置,则∠APD=
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,△ABC为等边三角形,周长为p.D1,E1,F1分别是△ABC三边的中点,连接D1E1,E1F1,F1D1,可得△D1E1F1
(1)用p表示△D1E1F1的周长是
1
2
p
1
2
p

(2)当D2,E2,F2分别是△D1E1F1三边的中点,如图②,则△D2E2F2的周长是
1
4
p
1
4
p
;(用含p的式子表示)
(3)按照上述思路探索下去,当Dn,En,Fn分别是△Dn-1En-1Fn-1三边的中点时(n为正整数),则DnEnFn的周长是
1
2n
p
1
2n
p
.(用含n、p的式子表示)

查看答案和解析>>

同步练习册答案