【题目】如图,△ABC和△DEF都是等腰直角三角形,∠ACB=∠EFD=90,△DEF,的顶点E与△ABC的斜边AB的中点重合.将△DEF绕点E旋转,旋转过程中,线段AC与线段EF相交于点Q,射线ED与射线BC相交于点P.
(1)求证:△AEQ∽△BPE;
(2)求证:PE平分∠BPQ;
(3)当AQ=2,AE=,求PQ的长.
【答案】(1)证明见解析;(2)证明见解析;(3)5
【解析】
(1)求出∠A=∠B=∠DEF=45和∠AEQ=∠BPE ,即可证明相似.
(2)证明△AEQ∽△EPQ,推出∠EPQ=∠BPE即可解答.
(3) 过点E作EH⊥BP于点H, 根据条件求出△AEQ∽△BPE,推出PE,再利用相似解答.
解:(1)证明:∵△ABC和△DEF都是等腰直角三角形,
∴∠A=∠B=∠DEF=45,
而∠PEB+∠AEQ=∠PEB+∠EPB=180-45=135
∴∠AEQ=∠BPE
∴△AEQ∽△BPE;
(2)∵△AEQ∽△BPE,∴∠AEQ=∠BPE,,
而AE=BE,∴,…
∵∠A=∠DEF=45,
∴△AEQ∽△EPQ,
∴∠AEQ=∠EPQ,∴∠EPQ=∠BPE,
即PE平分∠BPQ;
(3)过点E作EH⊥BP于点H,AQ=2,AE=
∵AE=BE=,∠ACB=90,AC=BC,由勾股定理易得AC=BC=6,
∵∠B=45,BE=,易得EH=BH=3
∵△AEQ∽△BPE,∴, ∴…
∴PH=BP-BH=9-3=6, ∴…
∵△AEQ∽△EPQ∽△BPE,
∴,∴.
科目:初中数学 来源: 题型:
【题目】请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)
(1)如图①,四边形 ABCD 中,AB=AD,∠B=∠D,画出四边形 ABCD 的对称轴 m;
(2)如图②,四边形 ABCD 中,AD∥BC,∠A=∠D,画出 BC 边的垂直平分线 n.
(3)如图③,△ABC 的外接圆的圆心是点 O,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,分别过点,作垂直于轴的直线和,探究直线、与函数的图象(双曲线)之间的关系,下列结论正确的是( )
A.两条直线可能都不与双曲线相交
B.当时,两条直线与双曲线的交点到原点的距离不相等
C.当时,两条直线与双曲线的交点都在轴左侧
D.当时,两条直线与双曲线的交点都在轴右侧
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点的坐标为,且,抛物线图象经过三点.
(1)求两点的坐标;
(2)求抛物线的解析式;
(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为6,E是BC的中点,连接AE,以AE为边在正方形内部作∠EAF=45°,边交于点,连接,则下列说法中:①;②;③tan∠AFE=3;④.正确的有( )
A.①②③B.②④C.①④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由题意知商品的最低销售单价是 元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;
(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com