精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,点C是⊙O上一点,AD平分∠CAB交⊙O于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AC=3,DE=2,求AD的长.
(1)证明:连接OD,
∵AD为∠EAB的平分线,
∴∠EAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠EAD=∠ODA,
∴ODAE,
∵AE⊥ED,
∴OD⊥DE,
则DE为圆O的切线;
(2)∵DE为圆的切线,AE为圆的割线,
∴DE2=EC•EA=EC•(EC+AC),
∵AC=3,DE=2,
∴4=EC(EC+3),即EC2+3EC-4=0,即(EC-1)(EC+4)=0,
解得:EC=1,
则AE=AC+CE=3+1=4,
在Rt△AED中,AE=4,DE=2,
根据勾股定理得:AD=2
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm.
(1)求⊙O的半径;
(2)求切线CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

以三角形的一边为直径的圆恰好与另一边相切,则此三角形是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是______(只需填一个条件).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H.
(1)求圆心C的坐标及半径R的值;
(2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,点C在以AB为直径的半圆上,∠CAB的平分线AD交BC于点D,⊙O经过A、D两点,且圆心O在AB上.
(1)求证:BD是⊙O的切线.
(2)若
AC
AB
=
1
4
BC=4
5
,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O是以坐标原点为圆心,半径为1,函数y=x与⊙O交于点A、B,点P(x,0)在x轴上运动,过点P且与OB平行的直线与⊙O有公共点,则x的范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动到点M,点C),以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为E.
(1)求四边形CDFP的周长;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC,FP相交于点G,连接OE并延长交直线DC于H〔如图(2)〕.问是否存在点P,使△EFO△EHG(其中△EFO顶点E、F、O与△EHG顶点E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为(  )
A.
12
7
B.
7
12
C.
7
2
D.2
3

查看答案和解析>>

同步练习册答案