分析 (1)由点A与点A1关于直线MN对称,可得出∠AOM=∠A1OM,再由等腰三角形的性质可得出∠AOB=30°,通过角的计算即可得出结论;
(2)过点A作AC⊥x轴于点C,过点B1作B1D⊥x轴于点D,通过解直角三角形以及等腰三角形的性质可得出点A、B点的坐标,再根据对称的性质即可得出点A1的坐标以及AB1=A1B,在Rt△OB1D中,利用特殊角的三角函数值即可得出B1D的长度,此题得解.
解答 解:(1)∵点A与点A1关于直线MN对称,
∴∠AOM=∠A1OM,
∵AB=AO,∠ABO=30°,
∴∠AOB=30°,
∵∠AOB+∠AOM+∠A1OM=180°,
∴∠AOM=75°.
(2)过点A作AC⊥x轴于点C,过点B1作B1D⊥x轴于点D,如图所示.
∵∠AOC=30°,∠ACO=90°,AC=1,
∴AO=2AC=2,OC=$\sqrt{3}$AC=$\sqrt{3}$,
∵AB=AO,
∴BO=2OC=2$\sqrt{3}$,
∴点A(-$\sqrt{3}$,1),点B(-2$\sqrt{3}$,0).
∵点A与点A1关于直线MN对称,
∴OA1=OA=2,
∴点A1(2,0),
∴A1B=2-(-2$\sqrt{3}$)=2+2$\sqrt{3}$,
∵点A关于直线MN的对称点A1,点B关于直线MN的对称点为B1,
∴AB1=A1B=2+2$\sqrt{3}$,OB1=OB=2$\sqrt{3}$.
在Rt△OB1D中,∠B1OD=∠AOB=30°,
∴B1D=$\frac{1}{2}$OB1=$\sqrt{3}$.
故线段AB1的长为2+2$\sqrt{3}$,B1的纵坐标为$\sqrt{3}$.
点评 本题考查了对称的性质、等腰三角形的性质、特殊角的三角函数值以及角的计算,解题的关键是:(1)找出∠AOM=∠A1OM;(2)求出线段A1B和B1D的长度.本题属于中档题,难度不大,解决该题型题目时,根据轴对称的性质找出相等的边角关系是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com