精英家教网 > 初中数学 > 题目详情

【题目】木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是(  )
A.
B.
C.
D.

【答案】D
【解析】解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线,
所以OP= AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.

先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP= AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.本题考查了轨迹,直角三角形斜边上的中线,解题的关键是知道直角三角形斜边上的中线等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P= ,且其日销售量y(kg)与时间t(天)的关系如表:

时间t(天)

1

3

6

10

20

40

日销售量y(kg)

118

114

108

100

80

40


(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80/块,单色地砖的单价是40/块.

(1)两种型号的地砖各采购了多少块?

(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【新知理解】

如图①,点C在线段AB上,图中共有三条线段ABACBC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB巧点”.

线段的中点__________这条线段的巧点;(填不是.

AB = 12cm,点C是线段AB的巧点,则AC=___________cm

【解决问题】

3如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点PQ同时出发,当其中一点到达终点时,运动停止,设移动的时间为ts.t为何值时,APQ三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABCDE在同一直线上,且ACBDE是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;

(2)当AD=10,AB=3时,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧 上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
(1)四边形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是( )

A.7
B.7.5
C.8
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;
②点O与O′的距离为4;
③四边形AO BO′的面积为6+3
④∠AOB=150°;
⑤SAOC+SAOB=6+
其中正确的结论是( )

A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤

查看答案和解析>>

同步练习册答案