精英家教网 > 初中数学 > 题目详情
8.如图,AB∥CD,AD∥BC,点E、F分别是线段BC和CD上的动点,在两点运动到某一位置时,恰好使得∠AEF=∠AFE,此时量得∠BAE=15°,∠FEC=12°,∠DAF=25°,则∠EFC=22°.

分析 设∠EAF=x,得到∠AEF=∠AFE=$\frac{180°-x}{2}$,由于AD∥BC,于是得到∠AEB=∠EAD=x+25°,根据∠AEB+∠AEF+∠FEC=180°,列方程得到∠BAD=146°,证得四边形ABCD是平行四边形,得到∠C=∠BAD=146°,根据三角形的内角和得到结果.

解答 解:设∠EAF=x,
∴∠AEF=∠AFE=$\frac{180°-x}{2}$,
∵AD∥BC,
∴∠AEB=∠EAD=x+25°,
∵∠AEB+∠AEF+∠FEC=180°,
∴x+25°+$\frac{180°-x}{2}$+12°=180°
解得:x=106°,
∴∠BAD=146°,
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,
∴∠C=∠BAD=146°,
∴∠EFC=180°-146°-12°=22°,
故答案为:22°

点评 本题考查了平行线的性质,等腰三角形的性质,三角形的内角和,平行四边形的判定,熟练掌握性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.(-$\frac{3}{14}$)2015•($\frac{14}{3}$)2016=-$\frac{14}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.$\sqrt{81}$=9,$\root{3}{-64}$=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在?ABCD中,点E在BC上,AE平分∠BAD,且AB=AE,连接DE并延长与AB的延长线交于点F,连接CF,若AB=2cm,则△CEF面积是$\sqrt{3}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知,如图⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,若BE=2,AE=6,则半径是2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图:点C,D分别表示两所大学,AO,BO表示两条公路,现计划修建一个超市,希望超市到两所大学的距离相等,到两条公路的距离也相等,请你找出超市所在的位置.(只用直尺和圆规)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.
(1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;
(2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台,请你帮学校设计购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$是方程2x-4y+2a=0的解,求a的值.

查看答案和解析>>

同步练习册答案