精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,在第一象限,且轴.直线从原点出发沿轴正方向平移.在平移过程中,直线被截得的线段长度与直线在轴上平移的距离的函数图象如图2所示.那么的面积为(

A.3B.C.6D.

【答案】B

【解析】

根据图象可以得到当移动的距离是4时,直线经过点A;当移动距离是6时,直线经过B,在移动距离是7时经过D,则AD=7-4=3,当直线经过D点,设交BCN.DN=2,作DMAB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.

解:根据图象可以得到当移动的距离是4时,直线经过点A

当移动距离是6时,直线经过B

当移动距离是7时经过D,则AD=7-4=3

如图:设交BCN,则DN=2,作DMAB于点M

∵移动直线为y=x

∴∠NDM=45°

∴DM=cos∠NDM·ND=

的面积为AD×DM=3×=3

故答案为B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH3.4m.当起重臂AC长度为9m,张角∠HAC118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AOB,作图.

步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;

步骤2:过点M作PQ的垂线交 于点C;

步骤3:画射线OC.

则下列判断:=MCOAOP=PQOC平分AOB,其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如表是一个4×4(44列共16组成)的奇妙方阵,从这个方阵中选四个,而且这四个中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个相加,其和是定值,则方阵中第三行三列的是(  )

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一,截至20201月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙月牙泉景区:E:张掖七彩舟霞景区,张帆同学与父母计划在暑假期间从中选择部分景区游玩.

1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?

2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从四个景区中任选两个景区去旅游,求选两个景区的概率(要求画树状图或列表求概率).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,等腰的底边轴上,,顶点的正半轴上,,一动点出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点同时出发,以为边作正方形,使正方形的同侧.设运动的时间为秒().

1)当点落在边上时,求的值;

2)设正方形重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;

3)如图2,取的中点,连结,当点开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,CDAB于点DBEAB于点BBE=CD,连接CEDE

(1)求证:四边形CDBE为矩形;

(2)若AC=2,,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轴,且与直线交于点轴并交轴于点,点是折线上一点.设过点的直线为

1)点的坐标为________;若所在的直线的函数值随的增大而减小,则的取值范围是________

2)当时,求直线的解析式;

3)若与线段有交点,设该交点为,是否存在的情况?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为____________

查看答案和解析>>

同步练习册答案