分析 (1)①根据题意画出图形即可;
②根据SAS证明△ADF≌△EDB,根据全等三角形的性质得到AF=EB.在△ABC和△DFB中,根据勾股定理得到AB=$8\sqrt{2}$,BF=$3\sqrt{2}$.再根据线段的和差关系得到AF=AB-BF=$5\sqrt{2}$,即BE=$5\sqrt{2}$.
(2)根据AAS证明△ACD≌△DFE,根据全等三角形的性质得到EF=DC.再根据等腰直角三角形的性质得到$\sqrt{2}$EF=BE,$\sqrt{2}$BC=AB,根据等量关系即可得到$\sqrt{2}$BD=BE+AB.
解答 解:(1)①补全图形,如图1所示.
②如图1②,
由题意可知AD=DE,∠ADE=90°.
∵DF⊥BC,
∴∠FDB=90°.
∴∠ADF=∠EDB.
∵∠C=90°,AC=BC,
∴∠ABC=∠DFB=90°.
∴DB=DF.
∴△ADF≌△EDB.
∴AF=EB.
在△ABC和△DFB中,
∵AC=8,DF=3,
∴A=$8\sqrt{2}$,BF=$3\sqrt{2}$.
AF=AB-BF=$5\sqrt{2}$
即BE=$5\sqrt{2}$.
(2)如图2,
$\sqrt{2}$BD=BE+AB.
点评 考查了作图-旋转变换,全等三角形的判定与性质,关键是根据题意证明三角形全等,同时涉及勾股定理,等腰直角三角形的性质的知识点.
科目:初中数学 来源: 题型:选择题
A. | (x+7)(x+4) | B. | (x+4)(x-7) | C. | (x-2)(x-3) | D. | (x+7)(x-4) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 当x<1时,y随x的增大而减小 | |
B. | 若图象与x轴有交点,则a≤4 | |
C. | 当a=3时,不等式x2+4x+a>0的解集是1<x<3 | |
D. | 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 41 | B. | 53 | C. | 57 | D. | 61 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com