精英家教网 > 初中数学 > 题目详情
12、已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2-4ac>0;
②若方程两根为-1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有(  )
分析:①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.
②把x=-1和2代入方程,建立两个等式,即可得到2a+c=0.
③方程ax2+c=0有两个不相等的实根,则△=-4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.
④把b=2a+c代入△,就能判断根的情况.
解答:解:①当x=1时,有若a+b+c=0,即方程有实数根了,
∴△≥0,故错误;
②把x=-1代入方程得到:a-b+c=0 (1)
把x=2代入方程得到:4a+2b+c=0  (2)
把(2)式减去(1)式×2得到:6a+3c=0,
即:2a+c=0,故正确;
③方程ax2+c=0有两个不相等的实数根,
则它的△=-4ac>0,
∴b2-4ac>0而方程ax2+bx+c=0的△=b2-4ac>0,
∴必有两个不相等的实数根.故正确;
④若b=2a+c则△=b2-4ac=(2a+c)2-4ac=4a2+c2
∵a≠0,
∴4a2+c2>0故正确.
②③④都正确,故选C.
点评:总结:1、一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
2、对于给定的条件要仔细分析,向所求的内容转化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为
13
时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
13
2
?若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①与方程②有且只有一个公共根,则a与b之间应满足的关系式为
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2axa-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级一模数学卷(解析版) 题型:解答题

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

同步练习册答案