精英家教网 > 初中数学 > 题目详情

【题目】如图,O的直径AB垂直于弦CD,垂足为点E,过点CO 的切线,交AB的延长线于点P,联结PD

1)判断直线PDO的位置关系,并加以证明;

2)联结CO并延长交O于点F,联结FPCD于点G,如果CF=10cosAPC=,求EG的长.

【答案】(1PD相切于点.(2

【解析】试题分析:(1)连接OD,欲证PD的切线,只需证明即可,通过全等三角形的对应角来证明该结论.

2)作于点M ,先求得,从而求得,得出,然后证得,得出

中, ,设,则OC=3,进而得出,从而求的,通过得出,即可求得EG

试题解析:

1)证明:联结

中, 于点

.又

于点半径,

..

于点

PD相切于点

2)作于点

于点

RtOCE中,

RtOCE中, ,设

,即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为4cm的等边△ABC中,点P、Q分别是边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ,CP交于点M,在点P,Q运动的过程中.

(1)求证:△ABQ≌△CAP;
(2)∠QMC的大小是否发生变化?若无变化,求∠QMC的度数;若有变化,请说明理由;
(3)连接PQ,当点P,Q运动多少秒时,△PBQ是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,计算正确的是( )
A.(15x2y﹣5xy2)÷5xy=3x﹣5y
B.98×102=(100﹣2)(100+2)=9996
C.
D.(3x+1)(x﹣2)=3x2+x﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:

如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.
(1)判定△ABD与△AED全等的依据是
(2)∠ACB与∠ABC的数量关系为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:
(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;
(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;
(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;
(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面的一元二次方程中,一次项系数为5的方程是( )
A.5x2﹣5x+1=0
B.3x2+5x+1=0
C.3x2﹣x+5=0
D.5x2﹣x=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平移后图形的位置是由_________________________________________所决定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.

(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

查看答案和解析>>

同步练习册答案