精英家教网 > 初中数学 > 题目详情
(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:
 月份x(月)  1  2  4
 输送的污水量y1(吨)  12000  6000  4000  3000  2400 2000 
7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=
1
2
x
,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=
3
4
x-
1
12
x2
;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.
(参考数据:
231
≈15.2,
419
≈20.5,
809
≈28.4)
分析:(1)利用表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系求出即可,再利用函数图象得出:图象过(7,10049),(12,10144)点,求出解析式即可;
(2)利用当1≤x≤6时,以及当7≤x≤12时,分别求出处理污水的费用,即可得出答案;
(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a一30)%,得出等式12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,进而求出即可.
解答:解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:
y1=
k
x
,将(1,12000)代入得:
k=1×12000=12000,
故y1=
12000
x
(1≤x≤6,且x取整数);
根据图象可以得出:图象过(7,10049),(12,10144)点,
代入y2=ax2+c(a≠0)得:
10049=49a+c
10144=144a+c

解得:
a=1
c=10000

故y2=x2+10000(7≤x≤12,且x取整数);

(2)当1≤x≤6,且x取整数时:
W=y1•z1+(12000-y1)•z2=
12000
x
1
2
x+(12000-
12000
x
)•(
3
4
x-
1
12
x2),
=-1000x2+10000x-3000,
∵a=-1000<0,x=-
b
2a
=5,1≤x≤6,
∴当x=5时,W最大=22000(元),
当7≤x≤12时,且x取整数时,
W=2×(12000-y2)+1.5y2=2×(12000-x2-10000)+1.5(x2+10000),
=-
1
2
x2+19000,
∵a=-
1
2
<0,x=-
b
2a
=0,
当7≤x≤12时,W随x的增大而减小,
∴当x=7时,W最大=18975.5(元),
∵22000>18975.5,
∴去年5月用于污水处理的费用最多,最多费用是22000元;

(3)由题意得:12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,
设t=a%,整理得:10t2+17t-13=0,
解得:t=
-17±
809
20

809
≈28.4,
∴t1≈0.57,t2≈-2.27(舍去),
∴a≈57,
答:a的值是57.
点评:此题主要考查了二次函数的应用和根据实际问题列反比例函数关系式和二次函数关系式、求二次函数最值等知识.此题阅读量较大,得出正确关于a%的等式方程是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月) 1 2 3 4 5 6 7
云端服务器数量y1(台) 32 34 36 38 40 42 44
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p1(万元)与月份x满足函数关系式:p1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p2(万元)与月份x满足函数关系式:p2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月)1234567
云端服务器数量y1(台)32343638404244
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p1(万元)与月份x满足函数关系式:p1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p2(万元)与月份x满足函数关系式:p2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中数学 来源:2012届重庆巴蜀中学九年级中考第五次6月考试押题数学试卷(带解析) 题型:解答题

2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划” 建设智慧重庆。 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:

月份x(月)
1
2
3
4
5
6
7
云端服务器数量(台)
32
34
36
38
40
42
44
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量(台)与月份x(月)之间存在如图所示的变化趋势:

(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出与x之间的函数关系式,根据如图所示的变化趋势,直接写出与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金(万元)与月份x满足函数关系式: ,(1≤x≤7,且x为整数);8至12月份的资金投入(万元)与月份x满足函数关系式:(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元。若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值。(参考数据:172=289,182=324,192=361)

查看答案和解析>>

科目:初中数学 来源:2012年重庆市巴蜀中学中考数学模拟试卷(6月份)(解析版) 题型:解答题

2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月)1234567
云端服务器数量y1(台)32343638404244
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p1(万元)与月份x满足函数关系式:p1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p2(万元)与月份x满足函数关系式:p2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆巴蜀中学九年级中考第五次6月考试押题数学试卷(解析版) 题型:解答题

2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划” 建设智慧重庆。 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:

月份x(月)

1

2

3

4

5

6

7

云端服务器数量(台)

32

34

36

38

40

42

44

而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量(台)与月份x(月)之间存在如图所示的变化趋势:

 

 

(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出与x之间的函数关系式,根据如图所示的变化趋势,直接写出与x之间满足的一次函数关系式;

 (2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金(万元)与月份x满足函数关系式: ,(1≤x≤7,且x为整数);8至12月份的资金投入(万元)与月份x满足函数关系式:(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;

(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元。若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值。(参考数据:172=289,182=324,192=361)

 

查看答案和解析>>

同步练习册答案