Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡­Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡­£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡­£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡­£¬ÕâÑù¾ÍÓÐS1=
n2-1
2n3
£¬S2=
n2-4
2n3
£¬¡­£»¼ÇW=S1+S2+¡­+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨¡¡¡¡£©
¾«Ó¢¼Ò½ÌÍø
A¡¢
2
3
B¡¢
1
2
C¡¢
1
3
D¡¢
1
4
·ÖÎö£ºÒÑÖªµãPn¶¼ÔÚxÖáÉÏÇÒ½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬ÔòÿµÈ·ÖΪ
1
n
£¬µãQn¶¼ÔÚÅ×ÎïÏßy=-x2+1ÉÏ£¬Èý½ÇÐÎÃæ»ýµÈÓڵ׳ËÒԸߵĻýµÄ
1
2
£¬ÀûÓô¹Ö±Ìõ¼þÇó³ö¸ß£¬¾Í¿ÉÒÔ°ÑOP1Q1£¬P1P2Q2£¬¡­µÄÃæ»ý±íʾ³öÀ´£¬ÕÒ³ö¹æÂÉ£¬Ð´³öSmµÄ±í´ïʽÔÙÇóºÍ£¬×îºóµ±nºÜ´óʱ£¬Çó³öW×î½Ó½üµÄ³£Êý£®
½â´ð£º½â£ºÓÉͼÏóÖªS3=
n2-9
2n3
£¬×ܽá³ö¹æÂÉ£ºSm=
n2-m2
2n3
(1¡Üm¡Ün-1)
£¬
Ôòw=S1+S2+¡­+Sn-1=
n2-1
2n3
+
n2-4
2n3
+¡­+
n2-(n-1)2
2n3
=
(n-1)n2-[1+22+¡­+(n-1)2]
2n3

=
n3-n2-
(n-1)n(2n-1)
6
2n3

=
4n3+3n2-7n
12n3

=
1
2
-
1
2n
-
1
6
+
1
4n
-
1
12n2

=
1
3
-
1
4n
-
1
12n2
£¬
µ±nÔ½À´Ô½´óʱ£¬¿ÉÖªW×î½Ó½üµÄ³£ÊýΪ
1
3
£®
¹ÊÑ¡C£®
µãÆÀ£º´ËÌ⿼²éÅ×ÎïÏßÐÔÖʺÍÃæ»ý¹«Ê½£¬ÊǵÀ¹æÂÉÌ⣬Ҫ½áºÏͼÏóºÍ¼¸ºÎ¹Øϵ£¬Çó³öͳһ±í´ïʽSm£¬Ñ§»á¹Û²ìͼÐÎÇóÃæ»ý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºµÚ2Õ¡¶¶þ´Îº¯Êý¡·Öп¼Ì⼯£¨25£©£º2.7 ×î´óÃæ»ýÊǶàÉÙ£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡­Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡­£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡­£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡­£¬ÕâÑù¾ÍÓÐS1=£¬S2=£¬¡­£»¼ÇW=S1+S2+¡­+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Äêɽ¶«Ê¡¶«ÓªÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨Ò»£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡­Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡­£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡­£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡­£¬ÕâÑù¾ÍÓÐS1=£¬S2=£¬¡­£»¼ÇW=S1+S2+¡­+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2010Äê°²»ÕÊ¡ºÏ·ÊÊÐÒ»ÖиßÒ»×ÔÖ÷ÕÐÉú¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡­Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡­£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡­£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡­£¬ÕâÑù¾ÍÓÐS1=£¬S2=£¬¡­£»¼ÇW=S1+S2+¡­+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2009ÄêÕã½­Ê¡¼ÎÐËÊÐÊýѧËØÖÊÆÀ¹À¾í3£¨ÐãÖÞÇøÍõ½­ãþÕòÖÐѧ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

£¨2008•º¼ÖÝ£©Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ï߶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡­Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡­£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡­£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡­£¬ÕâÑù¾ÍÓÐS1=£¬S2=£¬¡­£»¼ÇW=S1+S2+¡­+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸