精英家教网 > 初中数学 > 题目详情
已知抛物线经过点A(-1,0),B(3,0),交轴于点CM为抛物线的顶点,连接MB

(1)求该抛物线的解析式;
(2)在轴上是否存在点P满足△PBM是直角三角形,若存在,请求出P点的坐标,若不存在,请说明理由;
(3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为,求的度数.
(1) (2)P点的坐标为(0,1),(0,3),
(3)=135°

试题分析:(1)∵因为抛物线经过点A(-1,0),B(3,0)

解得

(2)设点P的坐标为(0,y),

① 若∠MPB=90°,过点M作ME ⊥x轴,MF ⊥y轴,
易证R t △PFM ∽ R t △BOP,可得:
解得,∴点P的坐标为(0,1),(0,3)

② 若∠PMB=90°,同理,R t △PFM ∽ R t △BEM,
 解得: ∴点P的坐标为
③ 若∠MBP=90°,同理, R t △POB ∽ R t △BEM
,解得: ,∴点P的坐标为
综上:△PBM是直角三角形时,P点的坐标为(0,1),(0,3),
(3)
由题意可知:B(3,0),M(1,4),Q(8,0),点M,M′关于点Q中心对称,
∴M′ (15,-4),
连结M′B,并延长M′B交y轴于点D,
,可得D(0,1)
连结MD,易证R t △DFM≌R t △DOB
∴△DBM是等腰直角三角形,∠DBM=45°
=135°
解法二:
过点M′作MB的垂线交MB的延长线于点D,
由△MBM′面积计算,转化为已知△面积和底边MB求高D M′,解得
再由 ,  M’D⊥MD, ∴△DBM′是等腰Rt△,
∴    
∴ ∠M’BD=∠BM’D=45°
=135°
点评:该题较为复杂,是常考题,主要考查学生对求二次函数解析式以及对图形中点与线段在直角坐标系中表示的方法的应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴的两个交点A、B,与y轴交于点C,A点坐标为(4,0),C点坐标(0,-4).

(1)求抛物线的解析式;
(2)用直尺和圆规作出△ABC的外接圆⊙M,(不写作法,保留作图痕迹),并求⊙M的圆心M的坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象过点.

(1)求二次函数的解析式;
(2)求证:是直角三角形;
(3)若点在第二象限,且是抛物线上的一动点,过点垂直轴于点,试探究是否存在以为顶点的三角形与相似?若存在,求出点的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,等腰直角的斜边轴上,顶点的坐标为为斜边上的高.抛物线与直线交于点,点的横坐标为.点轴的正半轴上,过点轴.交射线于点.设点的横坐标为,以为顶点的四边形的面积为

(1)求所在直线的解析式;
(2)求的值;
(3)当时,求的函数关系式;
(4)如图,设直线交射线于点,交抛物线于点.以为一边,在的右侧作矩形,其中.直接写出矩形重叠部分为轴对称图形时的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则一次函数的图象不经过(   ).
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的解析式;
(2)设点D的横坐标为m,则用m的代数式表示线段DC的长;
(3)在(2)的条件下,若△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;
(4)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数图象y=ax2+(a-3)x+1与x轴只有一个交点则a的值为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为  【 】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).

(1)直接写出点D的坐标;
(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形,若存在,求出P与Q的坐标;
(3)当点P运动到∠DOP=45度时,求抛物线的对称轴;
(4)求代数式a+b+c的值的取值范围(直接写出答案即可).

查看答案和解析>>

同步练习册答案