A. | 110° | B. | 120° | C. | 130° | D. | 140° |
分析 作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.
解答 解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,
连接A′A″与BC、CD的交点即为所求的点M、N,
∵∠BAD=110°,∠B=∠D=90°,
∴∠A′+∠A″=180°-110°=70°,
由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,
∴∠AMN+∠ANM=2(∠A′+∠A″)=2×70°=140°.
故选:D.
点评 本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{4}$ | C. | $\sqrt{{a}^{2}}$ | D. | $\sqrt{-3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-1,2) | B. | (-9,18) | C. | (-9,18)或(9,-18) | D. | (-1,2)或(1,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
时间(秒) | 0 | 5 | 7 |
A点位置 | 19 | -1 | -9 |
B点位置 | -8 | 17 | 27 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6cm | B. | 5cm | C. | 4cm | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com