精英家教网 > 初中数学 > 题目详情
为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场 平一场 负一场
积分 3 1 0
奖励(元/每人) 1500 700 0
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.
分析:(1)关系式为:场数之和为12,积分之和为19,注意用x表示出y与z;
(2)奖金与出场费的和为=500×比赛场数+1500×胜的场数+700×平的场数,根据(1)中自变量的取值得到最值.
解答:解:(1)设A队胜x场,平y场,负z场,那么
x+y+z=12
3x+y=19
,解得:
y=19-3x
z=2x-7

由题意得:
19-3x≥0
2x-7≥0
x≥0
,解得3.5≤x≤6
1
3

∴x可取4,5,6
当x=4时,y=7,z=1;当x=5时,y=4,z=3;当x=6时,y=1,z=5;

(2)W=500×12+1500x+700×(19-3x)=-600x+19300,那么当x=4时,W最大,为16900元.
点评:解决本题的关键是读懂题意,找到合适的等量关系.当有三个未知数,两个等式时,需用一个未知数表示出另两个未知数.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省温州市瓯海中学高一实验班选拔考试数学试卷(解析版) 题型:解答题

为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场平一场负一场
积分31
奖励(元/每人)1500700
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省长沙市长郡中学高一自主招生数学试卷(解析版) 题型:解答题

为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场平一场负一场
积分31
奖励(元/每人)1500700
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2002•黑龙江)为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场平一场负一场
积分31
奖励(元/每人)1500700
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《不等式与不等式组》(03)(解析版) 题型:解答题

(2002•黑龙江)为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表
胜一场平一场负一场
积分31
奖励(元/每人)1500700
当比赛进行到第12轮结束(每队均需比赛12场)时,A队共积分19分.
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.

查看答案和解析>>

同步练习册答案