精英家教网 > 初中数学 > 题目详情

【题目】在体育中考项目中考生可在篮球、排球中选考一项.小明为了选择一项参加体育中考,将自己的10次测验成绩进行比较并制作了折线统计图,依据图中信息小明选择哪一项参加体育中考更合适,并说明理由,______.

【答案】选择篮球参加中考,因为篮球和排球的平均得分相同,但篮球发挥更稳定.

【解析】

由折线统计图得出篮球和排球的成绩,分别计算其平均成绩和方差,据此分析可得.

由折线统计图知,篮球的成绩为:74981078787

排球的成绩为:761059810956

=×7+4+9+8+10+7+8+7+8+7=7.5

=×7+6+10+5+9+8+10+9+5+6=7.5

S篮球2=×[7-7.52+4-7.52+9-7.52+8-7.52+10-7.52+7-7.52+8-7.52+7-7.52+8-7.52+7-7.52]=2.25

S排球2=×[7-7.52+6-7.52+10-7.52+5-7.52+9-7.52+8-7.52+10-7.52+9-7.52+5-7.52+6-7.52]=3.45

由于=,但S篮球2S排球2

则篮球和排球的平均得分相同,但篮球发挥更稳定,

所以选择篮球参加中考,

故答案为:篮球,理由:篮球和排球的平均得分相同,但篮球发挥更稳定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用万元与年产量万件之间的函数图象是顶点为原点的抛物线的一部分如图所示;该产品的销售单价与年销售量万件之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元毛利润销售额生产费用

请写出yx以及zx之间的函数关系式;

wx之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推进节能减排,发展低碳经济,某市“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-节电投资)

(1)直接写出y与x之间的函数关系式;

(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?

(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2x轴交于点A,与y轴交于点B,与反比例函数(x<0)的图象交于点C,点D(3a)在直线y=x+2上,连接ODOC,若∠COD=135°,则k的值为( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分线交 BC 于点 D,交AC 于点 E.

(1)判断 BE △DCE 的外接圆⊙O 的位置关系,并说明理由;

(2) BE=,BD=1,求△DCE 的外接圆⊙O 的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节前安徽黄山脚下的小村庄的集市上人山人海还有人在摆摸彩游戏只见他手拿一个黑色的袋子内装大小、形状、质量完全相同的白球20只且每一个球上都写有号码(1~20号)和1只红球规定:每次只摸一只球.摸前交1元钱且在1~20内写一个号码摸到红球奖5元摸到号码数与你写的号码相同奖10元.

(1)你认为该游戏对摸彩者有利吗?说明你的理由.

(2)若一个摸彩者多次摸奖后他平均每次将获利或损失多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AD为O的直径,BC为O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.

(1)求证:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的长.

查看答案和解析>>

同步练习册答案