精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象交x轴于A(4,0),B(﹣1,0)两点,交y轴于点C,连结AC.

(1)填空:该抛物线的函数解析式为 ,其对称轴为直线

(2)P是抛物线在第一象限内图象上的一动点,过点Px轴的垂线,交AC于点Q,试求线段PQ的最大值;

(3)(2)的条件下,当线段PQ最大时,在x轴上有一点E(不与点O,A重合,且EQ=EA,在x轴上是否存在点D,使得ACDAEQ相似?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.

【答案】(1)见解析;(2)证明见解析.

【解析】

(1)把代入抛物线中列方程组,解出可得bc的值,可得抛物线的解析式,配方成顶点式可得对称轴;
(2)先利用待定系数法求直线AC的解析式,再设点P的坐标,并表示点Q的坐标,根据铅直高度表示PQ的长,并配方可得PQ的最大值;
(3)分两种情况:①当D在线段OA上时,如图1,根据AEQ∽△ADC,由EQ=EA,CD=AD,利用勾股定理解决问题;②当D在点B的左侧时,如图2根据三角形相似,由EQ=EA可得OA=OD,可得D的坐标.

.解:(1)代入抛物线中得:

解得:

∴抛物线的函数解析式为:其对称轴为直线:

故答案为:

(2)A(4,0),C(0,3),

∴直线AC的解析式为:

,

P是抛物线在第一象限内图象上的一动点,

0<x<4,

∴当x=2时,PQ的最大值为3;

(3)分两种情况:

①当D在线段OA上时,如图1,AEQADC

EQ=EA,

CD=AD

CD=a,则AD=aOD=4a

RtOCD,由勾股定理得:

②当D在点B的左侧时,如图2,AEQACD

EQ=EA

CD=AC

OCAD

OD=OA=4,

D(4,0),

综上所述,ACDAEQ相似时,D的坐标为(4,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,…,xk,称为数列Ak:x1,x2,…,xk,其中k为整数且k≥3.

定义V(Ak)=|x1﹣x2|+|x2﹣x3|+…+|xk2﹣xk1|+|xk1﹣xk|.

例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.

根据以上材料,回答下列问题:

(1)已知数列A3:3,5,﹣2,求V(A3).

(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4

(3)已知数列A5:x1,x2,x3,x4,x5中的5个数均为非负整数,且x1+x2+x3+x4+x5=25,请直接写出V(A5)的最大值和最小值及对应的数列.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O△ABC内一点,连结OBOC,并将ABOBOCAC的中点DEFG依次连结,得到四边形DEFG

1)求证:四边形DEFG是平行四边形;

2)若MEF的中点,OM=3∠OBC∠OCB互余,求DG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)当a>0时,如图所示,若点D是第三象限方抛物线上的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,在等边ABC 中,AD是∠BAC的平分线,一个含有120°角的MPN的顶点P(MPN=120°)与点D重合,一边与AB垂直于点E,另一边与AC交于点F.

①请猜想并写出AE+AFAD之间满足的数量关系,不必证明.

②在图1的基础上,若MPN绕着它的顶点P旋转,E、F仍然是MPN的两边与AB、AC的交点,当三角形纸板的边不与AB垂直时,如图2,(1)中猜想是否仍然成立?说明理由.

③如图 3,若MPN绕着它的顶点P旋转,当MPN的一边与AB的延长线相交,另一边与AC的反向延长线相交时,AE、AFAD之间又满足怎样的数量关系?直接写出结论,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=15,点D是边BC上一动点(不与B、C重合),ADE=B=α,DE交AC于点E,且tanα=有以下的结论: ADEACD; 当CD=9时,ACD与DBE全等; BDE为直角三角形时,BD为12或 0<BE,其中正确的结论是___________(填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】牛奶是最古老的天然饮料之一,被誉为“白色血液”,对人体的重要性可想而知,现已成为国家营养餐计划备选食品之一.为推行国家营养餐计划,某乳品公司向某营养餐中心运输一批牛奶,由铁路运输每千克只需运费0.58 元;由公路运输,每千克需运费0.28元,还需其他费用600元.请探究选用哪种运输方式所需费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1yk1x+6x轴、y轴分别交于AB两点,且OBOA,直线l2yk2x+b经过点C1),与x轴、y轴、直线AB分别交于点EFD三点.

1)求直线l1的解析式;

2)如图1,连接CB,当CDAB时,求点D的坐标和BCD的面积;

3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L经过点A0﹣1),且与双曲线c交于点B21).

1)求双曲线c及直线L的解析式;

2)已知Pa﹣1a)在双曲线c上,求P点的坐标.

查看答案和解析>>

同步练习册答案