精英家教网 > 初中数学 > 题目详情
精英家教网如图已知在Rt△ABC中,∠BAC=90°,E在斜边BC上,CE=CA,求证:∠BAE=
12
∠ACB.
分析:根据直角三角形性质可证∠BAE=90°-∠CAE,根据等腰三角形的性质可证∠CAE=
1
2
(180°-∠ACB),将后式代入前式即可证明∠BAE=
1
2
∠ACB.
解答:证明:∵在Rt△ABC中,∠BAC=90°,
∴∠BAE=90°-∠CAE,
∵CE=CA,
∴∠CAE=
1
2
(180°-∠ACB),
∴∠BAE=90°-∠CAE=90°-
1
2
(180°-∠ACB)=
1
2
∠ACB.
点评:此题主要考查学生对直角三角形性质和等腰三角形的性质的理解和掌握,此题难度不大,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•湖州)一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)如图,已知在Rt△ABC中,∠ACB=90°,BC>AC,⊙O为△ABC的外接圆,以点C为圆心,BC长为半径作弧交CA的延长线于点D,交⊙O于点E,连接BE、DE.
(l)求∠DEB的度数;
(2)若直线DE交⊙0于点F,判断点F在半圆AB上的位置,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•咸丰县二模)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)探索:请你利用图1验证勾股定理.
(2)应用:如图2,已知在Rt△ABC中,∠ACB=90°,AB=6,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2的值等于
9
2
π
9
2
π
.(请直接写出结果)
(3)拓展:如图3所示,MN表示一条铁路,A、B是两个城市,它们到铁路所在直线MN的垂直距离分别为AC=40千米,BD=60千米,且CD=80千米,现要在CD之间设一个中转站O,求出O应建在离C点多少千米处,才能使它到A、B两个城市的距离相等.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:单选题

如图已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥BC于E,则图中相似(但不全等)的三角形共有
[     ]
A.6对 
B.8对 
C.9对 
D.10对

查看答案和解析>>

同步练习册答案