【题目】中国古代有着辉煌的数学成就,《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.
(1)小明想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为________;
(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,用树状图或列表法求恰好选中《九章算术》和《孙子算经》的概率.(设《周髀算经》为,《九章算术》为,《海岛算经》为,《孙子算经》为)
【答案】(1);(2).
【解析】
(1)根据小明选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.
解:(1)小明想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.
故答案为:;
(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.
根据题意可以画出如下的树状图:
由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,
所有可能的结果中,满足事件M的结果有2种,即BD,DB,
∴P(M)=.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是△ABC的高线,CE是△ABC的角平分线,它们相交于点P.
(1)若∠B=40°,∠AEC=75°,求证:AB=BC;
(2)若∠BAC=90°,AP为△AEC边EC上中线,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,
(1)求证:∠1+∠2=90°.
(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为______(请将所有正确的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数分别填入相应的集合里:
,2.525525552…(相邻两个2之间的5的个数逐个加1),0,,,0.12,,,,
(1)负数集合:{ …};
(2)非负整数集合:{ …};
(3)分数集合:{ …};
(4)无理数集合:{ …}.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com