精英家教网 > 初中数学 > 题目详情
13.如图,在菱形ABCD中,∠ABC=45°,AB=6,点E、F、G分别是AB、BC、DC上的点,其中BE=DG=2,BF=1.点P从E点出发,以每秒2个单位长度沿折线EA-AD-DG运动;点Q以每秒1个单位沿折线FC-CG运动,当其中一个点到达后,另一个点也停止运动,设△BPQ的面积为S,点P,Q的运动时间为t秒,则S与t的函数关系的大致图象是(  )
A.B.C.D.

分析 分三种情形求出S与t的关系即可解决问题.

解答 解:当0<t≤2时,点P在AB上,点Q在BC上,
S=$\frac{1}{2}$•(1+t)•(2+2t)•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$(t+1)2
当2<t≤5时,点P在AD上,点Q在BC上,
S=$\frac{1}{2}$•(1+t)•3$\sqrt{2}$=$\frac{3\sqrt{2}}{2}$(t+1),
当5<t≤6时,点P、点Q在CD上,
S=$\frac{1}{2}$•[6-(t-5)-(2t-10)]•3$\sqrt{2}$=-$\frac{9\sqrt{2}}{2}$t+$\frac{63\sqrt{2}}{2}$.
故选A.

点评 本题考查动点问题函数应用、菱形的性质、三角形的面积、分段函数等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.已知关于x的一元二次方程x2-2$\sqrt{2}$x+1=0的实数根是x1、x2,则代数式x12+x22-x1x2=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在三角形纸片ABC中,∠ABC=90°,AB=5,BC=13,过点A,作直线l∥BC,折叠三角形纸片ABC,使点B落在直线l上的P处,折痕为MN.当点P在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,若设AP的长为x,MN的长为y,则下列选项,能表示y与x之间的函数关系的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系中,在直线l1:y=x-2上取点A,其横坐标为t,以A为顶点的抛物线C1与直线l1相交于点B,如图1,当点B在x轴上时,有AB=$\sqrt{2}$.
(1)求此时抛物线C1的函数表达式.
(2)当A点移动时,过点A作x轴的平行线,交直线l2:y=$\frac{1}{2}$x于点C,C为顶点的抛物线C2:y=x2+mx+n与直线12的另一个交点为点D.
①求抛物线C2的解析式.(用含t的式子表示)
②当AC⊥BD时,试求四边形ABCD的面积.
③以A,B,D三点为顶点的三角形能否为等腰三角形,若能,求t的值;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:
(1)1-3(x-2)=4;
(2)$\frac{2x+1}{3}$-$\frac{5x-1}{6}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=1:2,FB=12,则DF=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.分式方程$\frac{x}{x-2}$-1=$\frac{4}{{x}^{2}-4}$的解为x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足AB=AC时,四边形AEFD是菱形.(无需证明)
②△ABC满足∠BAC=150°时,四边形AEFD是矩形.(无需证明)
③△ABC满足AB=AC,∠BAC=150°时,四边形AEFD是正方形.(无需证明)

查看答案和解析>>

同步练习册答案