精英家教网 > 初中数学 > 题目详情
长方形台球桌ABCD上,一球从AB边上某处P击出,分别撞击球桌的边BC、DA各1次后,又回到出发点P处,每次球撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图∠α=∠β)若AB=3,BC=4,则此球所走路线的总长度(不计球的大小)为(  )
A.不确定B.12C.11D.10
精英家教网

精英家教网
令PQAC,则QRBD,
∵撞击前后的路线与桌边所成的角相等
∴图中所有三角形均相似;
PQ
AC
=
BQ
BC
QR
BD
=
CQ
BC

PQ
AC
+
QR
BD
=
BC
BC
=1,
即PQ+QR=AC=BD,
同理PS+SR=AC=BD,
∴PQ+QR+RS+SP=AC+BD=2AC.
∵AC=
32+42
=5,
∴PQ+QR+RS+SP=AC+BD=2AC=10.
故选 D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小冬遇到一个有趣的问题:长方形台球桌ABCD的边长分别为AB=3,BC=5.点P在AD上,且AP=2.一球从点P处沿与AD夹角为θ的方向击出,分别撞击AB、BC、CD各一次后到达点P0.每次撞击桌边时,撞击前后的路线与桌边所成的角相等(入射角等于反射角).如图①所示.
小冬的思考是这样开始的:如图②,将矩形ABCD沿直线AB折叠,得到矩形ABC1D1,由轴对称的知识,发现QE=QR,PE=PQ+QR.请你参考小冬的思路或想出自己的方法解决下列问题:
(1)点P0与点A重合时,此球所经过的路线总长度是
 

(2)当点P0落在线段AP上时(如图③),求tanθ的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

小冬遇到一个有趣的问题:长方形台球桌ABCD的边长分别为AB=3,BC=5.点P在AD上,且AP=2.一球从点P处沿与AD夹角为的方向击出,分别撞击AB、BC、CD各一次后到达点P0.每次撞击桌边时,撞击前后的路线与桌边所成的角相等(入射角等于反射角).如图①所示.小冬的思考是这样开始的:如图②,将矩形ABCD沿直线AB折叠,得到矩形ABC1D1,由轴对称的知识,发现QE=QR,PE=PQ+QR.

请你参考小冬的思路或想出自己的方法解决下列问题:
(1)当点P0与点P重合时,此球所经过的路线总长度
2
34
2
34

(2)当点P0与点A重合时(如图③),求此球所经过的路线总长度;
(3)当点P0落在线段AP上时,求tanθ的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

长方形台球桌ABCD上,一球从AB边上某处P击出,分别撞击球桌的边BC、DA各1次后,又回到出发点P处,每次球撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图∠α=∠β)若AB=3,BC=4,则此球所走路线的总长度(不计球的大小)为(  )

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市外国语学校中考数学一模试卷(解析版) 题型:解答题

小冬遇到一个有趣的问题:长方形台球桌ABCD的边长分别为AB=3,BC=5.点P在AD上,且AP=2.一球从点P处沿与AD夹角为θ的方向击出,分别撞击AB、BC、CD各一次后到达点P.每次撞击桌边时,撞击前后的路线与桌边所成的角相等(入射角等于反射角).如图①所示.
小冬的思考是这样开始的:如图②,将矩形ABCD沿直线AB折叠,得到矩形ABC1D1,由轴对称的知识,发现QE=QR,PE=PQ+QR.请你参考小冬的思路或想出自己的方法解决下列问题:
(1)点P与点A重合时,此球所经过的路线总长度是______

查看答案和解析>>

同步练习册答案