精英家教网 > 初中数学 > 题目详情
20、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点C1(1,0),C2(3,0),则B4的坐标是
(15,8)
分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直线为y=x+1,Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标,最后根据规律就可以求出B4的坐标.
解答:解:∵点B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直线y=kx+b(k>0)为y=x+1,
∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1
∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
所以B4的坐标是(24-1,23),即(15,8).
故填空答案:(15,8).
点评:解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是
(2n-1,2n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按照如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B3的坐标是
(7,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县二模)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为B1(1,1),B2(3,2),则B8的坐标是
(28-1,28-1)或(255,128)
(28-1,28-1)或(255,128)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海淀区一模)在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按如图所示的方式放置、点A1、A2A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上、已知C1(1,-1),C2
7
2
-
3
2
),则点A3的坐标是
29
4
9
4
29
4
9
4
;点An的坐标是
(5×(
3
2
)
n-1
-4,(
3
2
)
n-1
(5×(
3
2
)
n-1
-4,(
3
2
)
n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为
(2n-1-1,2n-1
(2n-1-1,2n-1
,Bn的坐标是
(2n-1,2n-1
(2n-1,2n-1

查看答案和解析>>

同步练习册答案