精英家教网 > 初中数学 > 题目详情
精英家教网如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是
 
分析:利用勾股定理得BD的长,再利用等腰三角形的性质得DF=
1
2
BD=
5
2
,再利用相似三角形的性质列出分式方程计算.
解答:精英家教网解:作EF⊥BD,
由勾股定理知,BD=5,
由折叠的性质可得到△ABD≌△C′DB?∠EDB=∠EBD?BE=ED,
则由等腰三角形的性质知,点F是BD的中点,DF=
1
2
BD=
5
2

∵△DEF∽△DBA,
∴EF:AB=DF:AD,
解得EF=
15
8

∴S△EBD=
1
2
BD•EF=
75
16
点评:本题利用了:(1)折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)矩形的性质,勾股定理,全等三角形和相似三角形的判定和性质,三角形的面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案