【题目】如图1,在矩形ABCD中,BG⊥AC交AC于点G,E为AB中点,EG的延长线交AD于点F,连接CF.
(1)若∠ABG=30°,证明AF=FD;
(2)如图2,若∠EFC=90°,连接BF,FM⊥FB交CD于点M.
①证明:DM=MC;
②求的值.
【答案】(1)见解析;(2)①见解析;②.
【解析】
(1)方法一:证明△AEF~△BAC,利用相似三角形的性质即可解决问题.
方法二:连接BD,证明EF∥BD即可解决问题.
(2)①方法一:利用相似三角形的性质证明即可.方法二:如图2,延长FM、BC交于点N,证明四边形DFCN是平行四边形即可.
②设AE=x,AF=y,求出AB2,AD2(用a表示),即可解决问题.
(1)∵∠ABG=30°,∠ABC=90°,
∴∠BAG=60°,
在Rt△ABG中,AE=BE,
∴∠AEF=60°=∠BAC,
又∵∠EAF=∠ABC=90°,
∴△AEF~△BAC,
∴,
又∵BC=AD,
∴,
即AF=FD.
(2)①∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴,
同理可证△ABF~△DFM,
∴,
即,
∴,
∴,
∴DC=2DM,
即DM=CM,
②设AE=x,AF=y,
在Rt△ABG中,AE=BE,
∴EA=EG,
∴∠EAG=∠EGA=∠FGC,
又∵∠EAF=∠EFC=90°,
∴∠FAC=∠FCA,
∴FA=FC,
∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴,
∴,
在Rt△DFC中,DF2+DC2=FC2=AF2
∴,
∴,
∴,
方法二:(1)如图1,连接BD.
在Rt△ABG中,∠BAG=90°﹣30°=60°,
∵矩形ABCD,
∴OA=OB,
∴∠OBA=∠OAB=60°,
在Rt△ABG中,AE=BE,
∴EA=EG,
又∵∠OAB=60°,
∴∠AEG=60°=∠ABO,
∴EF∥BD,
又∵AE=BE,
∴AF=FD
(2)①另证:如图2,延长FM、BC交于点N,
∵∠EAF=∠EFC=∠FDC=90°,
∴△EAF~△FDC,
∴
∵∠EBC=∠EFC=90°,
∴∠FCN=∠FEB
∵∠EFC=∠BFN=90°,
∴∠EFB=∠CFN
∴△EFB~△CFN,
∴
又∵,
∴CN=DF
又∵CN∥DF,
∴四边形DFCN是平行四边形,
∴DM=MC.
科目:初中数学 来源: 题型:
【题目】定义:点P在一次函数图象上,点Q在反比例函数图象上,若存在点P与点Q关于原点对称,我们称二次函数为一次函数与反比例函数的“新时代函数”,点P称为“幸福点”。
(1)判断与是否存在“新时代函数”,如果存在,请求出“幸福点”坐标,如果不存在,请说明理由;
(2)若反比例函数与一次函数有两个“幸福点”,和,且,求其“新时代函数”的解析式;
(3)若一次函数和反比例函数在自变量x的值满足的情况下,其“新时代函数”的最小值为3,求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴相交于点,与轴相交于、两点,且点在点的右侧,设抛物线的顶点为.
(1)若点与点关于直线对称,求的值;
(2)若,求的面积;
(3)当时,该抛物线上最高点与最低点纵坐标的差为,求出与的关系;若有最大值或最小值,直接写出这个最大值或最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地下车库出口处“两段式栏杆”如图①所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图②所示,其示意图如图③所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2m.现有一高度为2.4m的货车要送货进入地下车库,问此货车能否安全通过?请通过计算说明.(栏杆宽度忽略不计,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连结AD、CD
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C______、D______.
②⊙D的半径=______(结果保留根号)
③求出弧AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组对边相等而另一组对边不相等的凸四边形叫做“等对边四边形”.
(1)已知:图①、图②是5×5的正方形网格,线段AB、BC的端点均在格点上.在图①、图②中,按要求以AB、BC为边各画一个等对边四边形ABCD.
要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.
(2)若每个小正方形网格的边长为一个单位,请直接写出(1)问中所画每个等对边四边形ABCD的面积______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日游玩的热点景区.张老师对八(1)班学生“五·一”小长假随父母到这三个景区游玩的计划做了全面调查,凋奄分四个类别:A 游三个景区;B 游两个景区;C 游一个景区;D 不到这三个景区游玩.现根据调查结果绘制了不完整饷条形统计图和扇形统计图,请结合图中信息解答下列问题.
(1)八(1)班共有学生 人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为 ;
(2)请将条形统计图补充完整:
(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com