【题目】如图,四边形ABCD是平行四边形,∠D=45°,∠BAC=90°,点E为BC边上一点,将AE绕点A按顺时针方向旋转90°后能与AF重合,且FB⊥BC,点G是FB与AE的交点,点E是AG的中点.
(1)若AG=2,BE=1,求BF的长;
(2)求证:AB=BG+2BE.
【答案】(1)BF=3;(2)见解析.
【解析】
(1)求出AE=GE=AG=,由旋转的性质得出∠GAF=90°,AF=AE=,由勾股定理得出GF==5,BG==2.即可得出答案;
(2)作延长DA交BF于M,作AN⊥BC于N,证出△ABC是等腰直角三角形,得出AB=AC,BC=AB,得出AN=BC=BN=CN,证出四边形AMBN是正方形,即可有AM=BM=BN=AN=CN,证出BE是△AMG的中位线,得出BM=BG,AM=2BE,因此BN=BM=BG=AM=2BE,BE=NE,即可得出结论.
(1)解:∵点E是AG的中点,
∴AE=GE=AG=,
由旋转的性质得:∠GAF=90°,AF=AE=,
∴GF===5,
∵FB⊥BC,
∴∠EBG=90°,
∴BG===2.
∴BF=GF﹣BG=5﹣2=3;
(2)证明:作延长DA交BF于M,作AN⊥BC于N,如图所示:
则∠AMB=∠ANB=∠ANC=90°,
∵FB⊥BC,
∴四边形AMBN是矩形,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=45°,AD∥BC,
∵∠BAC=90°,
∴△ABC是等腰直角三角形,
∴AB=AC,BC=AB,
∵AN⊥BC,
∴AN=BC=BN=CN,
∴四边形AMBN是正方形,
∴AM=BM=BN=AN=CN,
∵点E是AG的中点,MD∥BC,
∴BE是△AMG的中位线,
∴BM=BG,AM=2BE,
∴BN=BM=BG=AM=2BE,
∴BE=NE,
∵BC=CN+EN+BE=BG+2BE,
∴AB=BG+2BE.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1)、B(-4,-3)、C(-4,-1).
(1)将△ABC向右平移三个单位后得到则_________;
(2)画出△ABC关于原点O中心对称的图形.
(3)将△ABC绕原点A按顺时针方向旋转90°后得到画出则的坐标为_________,的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品每天的销售利润(元)与销售单价(元)之间满足关系:,其图像如图所示.
(1)销售单价为多少元时,这种商品每天的销售利润最大?最大利润为多少元?
(2)若该商品每天的销售利润不低于12元,则销售单价的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=110°,将△ABC绕点A顺时针方向旋转35°后能与△ADE重合,点G、F是DE分别与AB、BC的交点.
(1)求∠AGE的度数;
(2)求证:四边形ADFC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF,
(1)如图1,请直接给出线段MD、MF的数量及位置关系是 ;
(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;
(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
A. (,) B. (,) C. (2,-2) D. (,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一块直角三角形的铁皮,,,.要在其中剪出一个面积尽可能大的正方形,小红和小亮各想出了甲、乙两种方案,请你帮忙算一算哪一种方案剪出的正方形面积较大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
求出每天的销售利润元与销售单价元之间的函数关系式;
求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com