直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).
(1)求抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?
解:(1)在直线解析式中,令x=0,得y=﹣2;令y=0,得x=4,
∴A(4,0),C(0,﹣2)。
设抛物线的解析式为y=ax2+bx+c,
∵点A(4,0),B(1,0),C(0,﹣2)在抛物线上,
∴,解得。
∴抛物线的解析式为:。
(2)设点D坐标为(x,y),。
在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=。
如图,连接CD、AD,过点D作DF⊥y轴于点F,过点A作AG⊥FD交FD的延长线于点G,
则FD=x,DG=4﹣x,OF=AG=y,FC=y+2。
S△ACD=S梯形AGFC﹣S△CDF﹣S△ADG
=(AG+FC)•FG﹣FC•FD﹣DG•AG
=(y+y+2)×4﹣(y+2)•x﹣(4﹣x)•y
=2y﹣x﹣4
将代入得:S△ACD=2y﹣x﹣4=﹣x2+4x=﹣(x﹣2)2+4。
∴当x=2时,△ACD的面积最大,最大值为4。
当x=2时,y=1,∴D(2,1)。
∵S△ACD=AC•DE,AC=,
∴当△ACD的面积最大时,高DE最大,
则DE的最大值为:。
∴当D与直线AC的距离DE最大时,点D的坐标为(2,1),最大距离为。
【解析】
试题分析:(1)首先求出点A,点C的坐标;然后利用待定系数法求出抛物线的解析式。
(2)AC为定值,当DE最大时,△ACD的面积最大,因此只需要求出△ACD面积的最大值即可。如图所示,作辅助线,利用S△ACD=S梯形AGFC﹣S△CDF﹣S△ADG求出S△ACD的表达式,然后利用二次函数的性质求出最大值,并进而求出点D的坐标和DE的最大值。
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012届浙江省四校九年级联考数学卷(带解析) 题型:填空题
如图:直线与x,y轴分别交于A,B,C是AB的中点,点P从A出发以每秒1个单位的速度沿射线AO方向运动,将点C绕P顺时针旋转90°得到点D,作DE⊥x轴,垂足为E,连接PC,PD,PB.设点P的运动时间为t秒(0≤t≤16),当以P,D,E为顶点的三角形与△BOP相似时,写出所有t的值: ▲ .
查看答案和解析>>
科目:初中数学 来源:2009-2010学年河南省洛阳市五十五中九年级(上)期末数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省金四校九年级联考数学卷(解析版) 题型:填空题
如图:直线与x,y轴分别交于A,B,C是AB的中点,点P从A出发以每秒1个单位的速度沿射线AO方向运动,将点C绕P顺时针旋转90°得到点D,作DE⊥x轴,垂足为E,连接PC,PD,PB.设点P的运动时间为t秒(0≤t≤16),当以P,D,E为顶点的三角形与△BOP相似时,写出所有t的值: ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com