精英家教网 > 初中数学 > 题目详情
如图,已知C、D是双曲线y=
m
x
在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点.设C(x1精英家教网y1)、D(x2,y2),连接OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=
1
3
,OC=
10

(1)求C、D的坐标和m的值;
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.
分析:(1)过点C作CG⊥x轴于G,在直角△OCG中,已知tanα=
1
3
,OC=
10
,就可以求出CG,OQ的长,就得到C点的坐标.根据待定系数法得到反比例函数的解析式.过D作DH⊥x轴于H,则DH=y2,OH=x2,在Rt△ODH中,tanα=
DH
OH
=
1
3
,∴
x2
y2
=
1
3
,即y2=3x2,由x2y2=3解得DH的长,进而求出OH,得到D点的坐标.
(2)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的y=
3
x
交点,易证△POC≌△POD,则S△POC=S△POD
解答:解:(1)过点C作CG⊥x轴于G,
则CG=y1,OG=x1
在Rt△OCG中,∠GCO=∠BOC=α,
∵tanα=
OG
CG
=
1
3

x2
x1
=
1
3

即y1=3x1
又∵OC=
10

∴x12+y12=10,精英家教网
即x12+(3x12=10,
解得:x1=1或x1=-1(不合题意舍去)
∴x1=1,y1=3,
∴点C的坐标为C(1,3).
又点C在双曲线上,可得:m=3,
过D作DH⊥x轴于H,则DH=y2,OH=x2
在Rt△ODH中,tanα=
DH
OH
=
1
3

y2
x2
=
1
3

即x2=3y2
又∵x2y2=3,
∴y2=1或y2=-1(不合舍去),
∴x2=3,y2=1,
∴点D的坐标为D(3,1);

(2)双曲线上存在点P,使得S△POC=S△POD
这个点就是∠COD的平分线与双曲线的y=
3
x
交点
∵点D(3,1),
∴OD=
10

∴OD=OC,
∴点P在∠COD的平分线上,
则∠COP=∠POD,又OP=OP
∴△POC≌△POD,
∴S△POC=S△POD
点评:本题主要是根据勾股定理和三角函数的定义解决问题,通过它们把结论转化为方程的问题来解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1是一种带有黑白双色、边长是20 cm的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/cm2和0.01元/cm2,那么制作这样一块瓷砖所用黑白材料的精英家教网最低成本是
 
元.(π取3.14,结果精确到0.01元)

查看答案和解析>>

科目:初中数学 来源: 题型:

在某市开展的环境保护宣传周中,某校学生会就“你赞同停止使用一次性筷子吗?”这个问题对该校学生进行抽样调查,并根据调查结果绘制出如图所示的两幅统计图.请你根据图中信息解答下列问题:

(1)共调查了
200
200
名学生;回答“不赞同”的人数占调查总人数的百分比是
5%
5%

(2)请将图1中空缺的部分补充完整.
(3)已知一棵生长了20年的大树大约能制成5000双一次性筷子,如果每人每天用一双一次性筷子,请你估计一个1000万人口的城市1年(365天计算)要“用掉”多少棵这样的大树.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

著名数学教育家G.波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学好数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察、计算再填空.
已知:如图,OM平分∠AOB,ON平分∠BOC.
(1)当∠AOC=90°,∠BOC=70°时,∠MON=
45°
45°

(2)当∠AOC=80°,∠BOC=60°时,∠MON=
40°
40°

(3)当∠AOC=70°,∠BOC=50°时,∠MON=
35°
35°

(4)猜想:不论∠AOC和∠BOC的度数是多少,∠MON的度数总等于
∠AOC
∠AOC
度数的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

同步练习册答案