【题目】观察下列各式: , , , , ,…
(1)请猜想出表示上面各式的特点的一般规律,用含x(x表示正整数)的等式表示出来
(2)请利用上述规律计算: .(x为正整数)
(3)请利用上述规律,解方程: .
【答案】
(1)解: = ﹣
(2)解:原式=1﹣ + ﹣ + ﹣ +…+ ﹣ + ﹣ ,
=1﹣ ,
=
(3)解:方程变形得: ﹣ + ﹣ + ﹣ = ,
整理得: ﹣ = ,
去分母得:x+1﹣x+2=x﹣2,
解得:x=5,
检验:将x=5代入原方程得:左边 =右边,
∴原方程的根为x=5
【解析】(1)观察一系列等式得出一般性规律,写出即可;(2)利用得出的规律化简所求式子计算即可得到结果;(3)利用得出的规律化简方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【考点精析】解答此题的关键在于理解分式的加减法的相关知识,掌握分式的加减法分为同分母的加减法和异分母的加减法.而异分母的加减法是通过"通分"转化为同分母的加减法进行运算的,以及对去分母法的理解,了解先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊.
科目:初中数学 来源: 题型:
【题目】小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示.
(1)小王从乙地返回甲地用了多少小时?
(2)求小李出发6小时后距离甲地多远?
(3)在甲、乙两地之间有一丙地,小李从去时途经丙地,到返回时路过丙地,共用了2小时50分钟,求甲、丙两地相距多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.
(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4 , 给出如下结论:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 则S4=2S2;④若S1=S2 , 则P点在矩形的对角线上.
其中正确的结论的序号是(把所有正确结论的序号都填在横线上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF.
(1)求证:AB=AC;
(2)如果∠ABD=105°,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.等弧所对的圆周角相等
B.平分弦的直径垂直于弦
C.相等的圆心角所对的弧相等
D.圆是轴对称图形,任何一条直径都是它的对称轴
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com