精英家教网 > 初中数学 > 题目详情
(2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=
25
8
π
,S2=2π,则S3
8
8
分析:在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以
π
8
,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.
解答:解:在直角三角形中,利用勾股定理得:a2+b2=c2
π
8
a2+
π
8
b2=
π
8
c2
变形为:
1
2
a
2
2π+
1
2
b
2
2π=
1
2
c
2
2π,即S2+S3=S1
又S1=
25π
8
,S2=2π,
则S3=S1-S2=
25π
8
-2π=
8

故答案为:
8
点评:此题考查了勾股定理,以及圆的面积求法,利用了转化的思想,灵活运用勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•新疆)如图,一次函数y=kx-3的图象与反比例函数y=
mx
(x>0)
的图象交于P(1,2).
(1)求k,m的值;
(2)根据图象,请写出当x取何值时,一次函数的值小于反比例函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•新疆)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.
(1)求此时另一端A离地面的距离(精确到0.1m);
(2)若跷动AB,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.
(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•新疆)如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.
(1)请你写出四个不同类型的正确结论;
(2)若BE=4,AC=6,求DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).

(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是
正方形
正方形
,请说明理由;
(2)如图2,已知D(-
12
,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;
(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A-B-C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?

查看答案和解析>>

同步练习册答案