精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90,BC=6,sinA=
23
,则AB=
 
,sinB=
 
分析:先根据BC=6,sinA=
2
3
求出AB的长,再由勾股定理即可求出AC的长,进而可求出sinB的值.
解答:解:∵在Rt△ABC中,∠C=90,BC=6,sinA=
2
3

∴AB=
3AB
2
=9,AC=
AB2-BC2
=
92-62
=3
5

∴sinB=
AC
AB
=
5
3
点评:本题考查了勾股定理和锐角三角函数的定义,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案