【题目】如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,线段AB在x轴的正半轴上移动,且AB=1,过点A、B作y轴的平行线分别交函数y1=(x>0)与y2=(x>0)的图像于C、E和D、F,设点A的横坐标为m (m>0).
(1)连接OC、OE,则△OCE面积为 ;
(2)连接CF,当m为何值时,四边形ABFC是矩形;
(3)连接CD、EF,判断四边形CDFE能否是平行四边形,并说明理由;
(4)如图2,经过点B和y轴上点G(0,4)作直线BG交直线AC于点H,若点H的纵坐标为正整数,请求出整数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机张师傅某天上午营运全是在东西向的长江路上进行的,如果向东为正,向西为负,这天上午他行车里程(单位:km)如下:
.
⑴.最后一名乘客送到目的地,出租车在东面还是西面?在多少千米处?
⑵.请你帮张师傅算一下,这天上午他一共行驶了多少里程?
⑶.若每千米耗油0.1L,则这天上午张师傅一共用了多少升油?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数 的图象相交于第一、三象限内的两点,与轴交于点 .
⑴求该反比例函数和一次函数的解析式;
⑵在轴上找一点使最大,求的最大值及点的坐标;
⑶直接写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解:根据算术平方根的意义,由,得(2x-y)2=9,所以2x-y=3.①(第一步)
根据立方根的意义,由,得x-2y=-3.②(第二步)
解得x=3,y=3.
把x、y的值代入分式中,得.(第三步)
上述解答有两处错误,一处是___________步,忽视了___________;另一处是步___________,忽视了___________.请写出正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中, △ABC的三个顶点的位置如图所示,点A'的坐标是
(-2,2), 现将△ABC平移,使点A变换为点A',点B′、C′分别是B、C的对应点。
(1)请画出平移后的像△A'B'C'(不写画法) ,并直接写出点B′、C′的坐标:
B′ ( ) 、C′ ( ) ;
(2)若△ABC 内部一点P的坐标为(a,b),则点P 的对应点P ′的坐标是 ( ) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个车队共有20辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均相等,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.
(1)求行驶时车与车的间隔为多少米?
(2)若乙在街道一侧的人行道上与车队同向而行,速度为米/秒,当第一辆车的车头到最后一辆车的车尾经过他身边共用了40秒,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com