18£®Èçͼ1£¬¶þ´Îº¯Êýy=ax2+bx+3$\sqrt{3}$¾­¹ýµãA£¨3£¬0£©£¬G£¨-1£¬0£©Á½µã£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôµãMʱÅ×ÎïÏßÔÚµÚÒ»ÏóÏÞͼÏóÉϵÄÒ»µã£¬Çó¡÷ABMÃæ»ýµÄ×î´óÖµ£»
£¨3£©Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚµãP£¬¹ýµãE£¨0£¬$\frac{2}{3}$$\sqrt{3}$£©×÷xÖáµÄƽÐÐÏߣ¬½»ABÓÚµãF£¬ÊÇ·ñ´æÔÚ×ŵãQ£¬Ê¹µÃ¡÷FEQ¡×¡÷BEP£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝƽÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃMEµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®
£¨3£©¼´¿ÉÈ·¶¨¡÷BEP£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÅж¨¶¨Àí¼´¿ÉÇóµÃµãQµÄ×ø±ê£¬½âÌâʱҪעÒâ´ð°¸µÄ²»Î¨Ò»ÐÔ£®

½â´ð ½â£º£¨1£©½«A¡¢Gµã×ø±ê´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{9a+3b+3\sqrt{3}=0}\\{a-b+3\sqrt{3}=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\sqrt{3}}\\{b=2\sqrt{3}}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=-$\sqrt{3}$x2+2$\sqrt{3}$x+3$\sqrt{3}$£»
£¨2£©×÷ME¡ÍxÖá½»ABÓÚEµã£¬Èçͼ1
£¬
µ±x=0ʱ£¬y=3$\sqrt{3}$£¬¼´Bµã×ø±êΪ£¨0£¬3$\sqrt{3}$£©
Ö±ÏßABµÄ½âÎöʽΪy=-$\sqrt{3}$x+3$\sqrt{3}$£¬
ÉèM£¨n£¬-$\sqrt{3}$n2+2$\sqrt{3}$n+3$\sqrt{3}$£©£¬E£¨n£¬-$\sqrt{3}$n+3$\sqrt{3}$£©£¬
ME¨T-$\sqrt{3}$n2+2$\sqrt{3}$n+3$\sqrt{3}$-£¨-$\sqrt{3}$n+3$\sqrt{3}$£©=-$\sqrt{3}$n2+5$\sqrt{3}$n£¬
S¡÷ABM=$\frac{1}{2}$ME•xA=$\frac{1}{2}$£¨-$\sqrt{3}$n2+5$\sqrt{3}$n£©¡Á3=-$\frac{3\sqrt{3}}{2}$£¨n-$\frac{5}{2}$£©2+$\frac{75\sqrt{3}}{8}$£¬
µ±n=$\frac{5}{2}$ʱ£¬¡÷ABMÃæ»ýµÄ×î´óÖµÊÇ$\frac{75\sqrt{3}}{8}$£»
£¨3£©´æÔÚ£»ÀíÓÉÈçÏ£º
OE=$\frac{2\sqrt{3}}{3}$£¬AP=2£¬OP=1£¬BE=3$\sqrt{3}$-$\frac{2\sqrt{3}}{3}$=$\frac{7\sqrt{3}}{3}$£¬
µ±y=$\frac{2\sqrt{3}}{3}$ʱ£¬-$\sqrt{3}$x+3$\sqrt{3}$=$\frac{2\sqrt{3}}{3}$£¬½âµÃx=$\frac{7}{3}$£¬¼´EF=$\frac{7}{3}$
½«¡÷BEPÈƵãE˳ʱÕë·½ÏòÐýת90¡ã£¬µÃµ½¡÷B'EC£¨Èçͼ3£©£¬
¡ßOB¡ÍEF£¬
¡àµãB'ÔÚÖ±ÏßEFÉÏ£¬
¡ßCµãºá×ø±ê¾ø¶ÔÖµµÈÓÚEO³¤¶È£¬Cµã×Ý×ø±ê¾ø¶ÔÖµµÈÓÚEO-PO³¤¶È£¬
¡àCµã×ø±êΪ£¨-$\frac{2\sqrt{3}}{3}$£¬$\frac{2\sqrt{3}}{3}$-1£©£¬
¹ýF×÷FQ¡ÎB'C£¬½»ECÓÚµãQ£¬
Ôò¡÷FEQ¡×¡÷B'EC£¬
ÓÉ$\frac{BE}{EF}$=$\frac{B¡äE}{EF}$=$\frac{CE}{EQ}$=$\sqrt{3}$£¬
¿ÉµÃQµÄ×ø±êΪ£¨-$\frac{2}{3}$£¬-$\frac{\sqrt{3}}{3}$£©£»
¸ù¾Ý¶Ô³ÆÐԿɵã¬Q¹ØÓÚÖ±ÏßEFµÄ¶Ô³ÆµãQ'£¨-$\frac{2}{3}$£¬$\frac{5\sqrt{3}}{3}$£©Ò²·ûºÏÌõ¼þ£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½â£¨1£©µÄ¹Ø¼üÊÇ´ý¶¨ÏµÊý·¨£»½â£¨2£©µÄ¹Ø¼üÊÇÀûÓÃÈý½ÇÐεÄÃæ»ýµÃ³ö¶þ´Îº¯Êý£»½â£¨3£©µÄ¹Ø¼üÊÇÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÊýÐνáºÏ˼ÏëµÄÓ¦Ó㬻¹Òª×¢Òâ´ð°¸µÄ²»Î¨Ò»ÐÔ£¬²»ÒªÂ©½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{9x+4y=1}\\{x+6y=-11}\end{array}\right.$£¬ÄÇôx+yµÄÖµÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺$\frac{3}{4}$¡Â£¨2.5-$\frac{1}{4}$£©+$\frac{5}{12}$¡Á3$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôµÈʽ£¨6a3+3a2£©¡Â£¨6a£©=£¨a+1£©£¨a+2£©³ÉÁ¢£¬ÔòaµÄֵΪ-$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬¡÷ABCµÄ¶¥µãA£¨-1£¬0£©£¬µãBÓëµãA¹ØÓÚÔ­µã¶Ô³Æ£¬AB=BC£¬¡ÏCAB=30¡ã£¬½«¡÷ABCÈƵãCÐýת£¬Ê¹µãAÂäÔÚxÖáÉϵĵãD´¦£¬µãBÂäÔÚµãE´¦£¬ÄÇôBEËùÔÚÖ±ÏߵĽâÎöʽΪy=$\frac{\sqrt{3}}{3}$x-$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èôa£¾b£¬ÔòÏÂÁÐʽ×ÓÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a-3£¾b-3B£®$\frac{1}{2}$a£¼$\frac{1}{2}$bC£®a-b£¼0D£®-3a£¾-3b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½«³¤Îª40cm£¬¿íΪ15cmµÄ³¤·½Ðΰ×Ö½£¬°´Í¼ËùʾµÄ·½·¨Õ³ºÏÆðÀ´£¬Õ³ºÏ²¿·Ö¿íΪ5cm£®

£¨1£©¸ù¾Ýͼ£¬½«±í¸ñ²¹³äÍêÕû£®
°×Ö½ÕÅÊý12345¡­
Ö½Ìõ³¤¶È4075110145180¡­
£¨2£©ÉèxÕÅ°×Ö½Õ³ºÏºóµÄ×ܳ¤¶ÈΪy cm£¬ÔòyÓëxÖ®¼äµÄ¹ØϵʽÊÇʲô£¿
£¨3£©ÄãÈÏΪ¶àÉÙÕÅ°×Ö½Õ³ºÏÆðÀ´×ܳ¤¶È¿ÉÄÜΪ2017cmÂð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ?ABCDÖУ¬¡ÏB=2¡ÏA£¬Ôò¡ÏBµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®30¡ãB£®60¡ãC£®90¡ãD£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐËĸöͼÐÎÖУ¬ÊÇÖÐÐĶԳÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸