精英家教网 > 初中数学 > 题目详情

如图,_________不可以折成一个棱柱.

(    )

答案:A
解析:

动手试试可以发现A答案不等折成棱柱

∴选A


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读材料,并回答下列问题:
如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.
(1)请你写出一种全等变换的方法(除翻折、平移外).
旋转

(2)如图2,△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=3,则DC=
1

(3)如图3,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE翻折,当点A落在四边形BCED内部变为F时,则∠F和∠BDF+∠CEF之间的数量关系始终保持不变,请你直接写出它们之间的关系式:
∠BDF+∠CEF=2∠F

查看答案和解析>>

科目:初中数学 来源: 题型:

图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),
精英家教网
(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:
精英家教网
请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图中的四个图案,四位同学分别说出了它们的形成过程,其中说得不正确的是(  )
精英家教网
A、图①是一个长方形绕着图形的中心按逆时针旋转90°,180°和270°所得B、图②可由一个钝角三角形绕着图形的中心按同一方向旋转90°,180°和270°形成C、图③可以看作以正方形的一条对角线所在直线为对称轴翻折所得D、图④可以看作由长方形的一边的垂直平分线为对称轴翻折而成

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),

(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:

请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2011年中考复习专项训练《实验与操作》(解析版) 题型:解答题

(2010•博野县二模)图①是一张长与宽不相等的矩形纸片,同学们都知道按图②所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图③),

(1)实验:
将这两张纸片分别按图④、⑤所示的折叠方法进行:

请你分别在图④、⑤的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?
(2)当原矩形纸片的AB=4,BC=6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;
(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?
(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两梯形的面积.

查看答案和解析>>

同步练习册答案