精英家教网 > 初中数学 > 题目详情
已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.
(1)旋转中心是______.旋转角为______度.
(2)请你判断△DFE的形状,并说明理由.
(3)求四边形DEBF的周长和面积.

【答案】分析:(1)确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;
(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;
(3)根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.
解答:解:(1)旋转中心是点D.旋转角为90度.
(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,
则△DFE的形状是等腰直角三角形.
(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20;
面积等于正方形ABCD的面积=16.
点评:本题主要考查了旋转的性质,旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为
BC
上一动点,求证:PA=PB+PC.
下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.
证明:在AP上截取AE=CP,连接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圆周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为
BC
上一动点,求证:PA=PC+
2
PB.
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为
BC
上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:PA=PC+
2
PB

(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=
3
,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2012C2012,则m=
2
2
.点C2012的坐标是
(-22013,0)
(-22013,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,过点O且半径为5的⊙P交x的正半轴于点M(2m,0),交y轴的负半轴于点D;弧OBM与弧OAM关于x轴对称,其中A、B、C是过点P且垂直于x轴的直线与两弧及圆的交点,以点B为顶点且过点D的抛物线l交⊙P与另一点E.
(1)当m=4时,求出抛物线l的函数关系式并写出点E的坐标;
(2)当m取何值时,四边形BDCE面积最大?最大面积是多少?
(3)是否存在实数m,使得四边形BDCE为菱形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年河北省保定市中考数学二模试卷(解析版) 题型:解答题

(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.

查看答案和解析>>

同步练习册答案