精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(-1,2),有下列结论:①点Q的坐标是(-4,2);②PQ=3;③△MPQ的面积是3;④M点的坐标是(-3,0).其中正确的结论序号是
 
.(多填或错填的得0分,少填的酌情给分)
分析:作PE⊥X轴于E,MN⊥PQ于N,根据勾股定理求出PM,根据勾股定理求出PN,根据垂径定理求出PQ=2PN,即可推出答案.
解答:精英家教网解:作PE⊥X轴于E,MN⊥PQ于N,
∵P(-1,2),
∴OE=1,PE=NM=2,
∵MN⊥PQ,M为圆心,
∴2PN=2QN=PQ,
在△PME中,由勾股定理得:PM2=22+(PM-1)2
∴PM=
5
2

由勾股定理得:PN=
PM2-MN2
=
3
2

∴PQ=3,∴②正确;
Q(-4,2),∴①正确;
△MPQ的面积是
1
2
×3×2=3,∴③正确;
OM=1+
3
2
=
5
2
,∴④错误;
故答案为:①②③.
点评:本题主要考查对垂径定理,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出PM、PN的长是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案