【题目】如图,A(2,0)、B(6,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF绕O点旋转时,CD的最小值为_____.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,.
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣2x+3经过点A(﹣3,0),P是抛物线上的一个动点.
(1)求该函数的表达式;
(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,PA,PC.求△ACP的面积S关于t的函数关系式,并求出△ACP的面积最大时点P的坐标.
(3)连接BC,在抛物线上是否存在点P,使得∠PCA=∠OCB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx-5(a,b是常数,a0)的图象与x轴交于点A(-1,0)和点B(5,0).动直线y=t(t为常数)与抛物线交于不同的两点P、Q(点P在Q的左侧).
(1)求抛物线的解析式;
(2)动直线y=t与y轴交于点C,若CQ=3CP,求t的值;
(3)将抛物线y=ax2+bx-5在x轴下方的部分沿x轴翻折,若动直线y=t与翻折后的图像交于点M、N,点M、N能否是线段PQ的三等分点?若能,求PQ的长度;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰的边与正方形的边重合,.从如图所示位置水平向右匀速运动,直到点落在边上.设,运动过程中与正方形的重合部分面积为,则能反映与的函数关系的图象是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com