精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC, BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F, DF="6."
(1) 求AE的长;
(2) 求 的值.
(1);(2).

试题分析:(1)根据等边三角形的性质和判定推出∠C=60°,求出∠CBF=60°,∠F=30°,解直角三角形求出BD,即可得出答案.
(2)求出BF长,根据相似三角形的性质和判定得出即可.
试题解析:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,
∴AC=AB=BC.∴△ABC是等边三角形.∴∠C=60°.
∵BF∥AC,∴∠CBF=∠C=60°.
∵AD⊥BC,∴∠FDB=90°.∴∠F=30°.
∵DF=6,∴BD=.
∵AE=EC=BD=DC,∴AE=.
(2)∵∠BDF=90°,∠F=30°,BD=,∴BF=2DB=.
∵AC∥BF,∴△AEG∽△FBG.
.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.有下列结论:
①∠DEO=45°;
②△AOD≌△COE;
③S四边形CDOE =S△ABC

其中正确的结论序号为          .(把你认为正确的都写上)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

折纸与证明---用纸折出黄金分割点:
第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.
第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AG>GD)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下列四个结论:①两个正三角形相似;②两个等腰直角三角形相似;③两个菱形相似;④两个矩形相似;⑤两个正方形相似,其中正确的结论是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知小聪的身高为1.8米,在太阳光下的地面影长为2.4米,若此时测得一旗杆在同一地面的影长为20米,则旗杆高应为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知△ABC与△DEF相似且面积比为4︰9,则△ABC与△DEF的相似比为           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究:
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,
CG和EH的数量关系是________,
的值是________.
(2)类比延伸:
如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移:
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果x : y : z =" 2" : 3 : 4, 求的值为(     )
A.B.1C.2D.

查看答案和解析>>

同步练习册答案