精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
(1)△EFG的边长是
 
(用含有x的代数式表示),当x=2时,点G的位置在
 

(2)若△EFG与梯形ABCD重叠部分面积是y,求:
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
(3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值.精英家教网
分析:(1)根据等边三角形的三边相等,则△EFG的边长是点E移动的距离;根据等边三角形的三线合一和F点移动速度是E点移动速度的2倍,即可分析出BF=4,此时等边三角形的边长是2,则点G和点D重合;
(2)①当0<x≤2时,重叠部分的面积即为等边三角形的面积;
②当2<x≤6时,分两种情况:当2<x<3时和当3≤x≤6时,进行计算;
(3)分别求得(2)中每一种情况的最大值,再进一步比较取其中的最大值即可.
解答:解:(1)∵点E、F同时从B点出发,沿射线BC向右匀速移动,且F点移动速度是E点移动速度的2倍,
∴BF=2BE=2x,
∴EF=BF-BE=2x-x=x,
∴△EFG的边长是x;
过D作DH⊥BC于H,得矩形ABHD及直角△CDH,连接DE、DF.
在直角△CDH中,∵∠C=30°,CH=BC-AD=3,
∴DH=CH•tan30°=3×
3
3
=
3

当x=2时,BE=EF=2,
∵△EFG是等边三角形,且DH⊥BC交点H,
∴EH=HF=1
∴DE=DF=
DH2+EH2
=2,
∴△DEF是等边三角形,
∴点G的位置在D点.
故答案为x,D点;
精英家教网
(2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=
3
4
x2
②分两种情况:
Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,
△EFG与梯形ABCD重叠部分为四边形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
∵在Rt△NMG中,∠G=60°,GN=3x-6,
∴GM=
1
2
(3x-6),
由勾股定理得:MN=
3
2
(3x-6),
∴S△GMN=
1
2
×GM×MN=
1
2
×
1
2
(3x-6)×
3
2
(3x-6)=
3
8
(3x-6)2
所以,此时y=
3
4
x2-
3
8
(3x-6)2=-
7
3
8
x2+
9
3
2
x-
9
3
2

精英家教网
Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,
△EFG与梯形ABCD重叠部分为△ECP,
∵EC=6-x,
∴y=
3
8
(6-x)2=
3
8
x2-
3
3
2
x+
9
3
2

(3)当0<x≤2时,
∵y=
3
4
x2,在x>0时,y随x增大而增大,
∴x=2时,y最大=
3

当2<x<3时,∵y=-
7
3
8
x2+
9
3
2
x-
9
3
2
,在x=
18
7
时,y最大=
9
3
7

当3≤x≤6时,∵y=
3
8
x2-
3
3
2
x+
9
3
2
,在x<6时,y随x增大而减小,
∴x=3时,y最大=
9
3
8

综上所述:当x=
18
7
时,y最大=
9
3
7

精英家教网
点评:此题是一道动态题,难度较大,注意不同的情况,能够熟练求得二次函数的最值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案