精英家教网 > 初中数学 > 题目详情

如图,一次函数y=ax+b的图象与x轴,y轴交于A、B两点,与反比例函数数学公式的图象相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.写出下列五个结论:
①△CEF与△DFE的面积相等;②EF∥CD;③△DCE≌△CDF;④△AOB∽△FOE; ⑤AC=BD.
其中正确结论的个数为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
C
分析:设D(x,),得出F(x,0),根据三角形的面积求出△DEF的面积,同法求出△CEF的面积,即可判断①;根据面积相等,推出边EF上的高相等,推出CD∥EF,可判断②;根据全等三角形的判定判断③即可;根据相似三角形的判定判断④即可;证出平行四边形BDFE和平行四边形ACEF,可推出BD=AC,判断⑤即可.
解答:①设D(x,),则F(x,0),
由图象可知x<0,k<0,
∴△DEF的面积是:×||×|x|=|k|,
设C(a,),则E(0,),
由图象可知:a>0,<0,
△CEF的面积是:×|a|×||=|k|,
∴△CEF的面积=△DEF的面积,
故①正确;
②即△CEF和△DEF以EF为底,则两三角形EF边上的高相等,
故EF∥CD,
故②正确;
③条件不足,无法证出两三角形全等的条件,故③错误;
④∵EF∥CD,
∴FE∥AB,
∴△AOB∽△FOE,
故④正确;
⑤∵BD∥EF,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
同理EF=AC,
∴AC=BD,
故⑤正确;
正确的有4个.
故选C.
点评:本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定,检查同学们综合运用定理进行推理的能力,关键是需要同学们牢固掌握课本知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案