精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图像与轴交于AB两点,与轴交于点C,连接AC,点P是抛物线上的一个动点,记△APC的面积为S,当S=2时,相应的点P的个数是(   )
A.4 个B.3个C.2个D.1个
C

试题分析:依题意可得A的坐标为(-3,0),B的坐标为(1,0),C的坐标为(0,-1),点P在抛物线上,而且S△APC=2,那么符合条件的有(1)当点P和点B重合,其面积即为4×1÷2=2,(2)假设动点P在y轴的左侧只干上,则S△APC=,解得,把代入,得(舍去),所以点P(-4,).在y轴的右侧上找不到适合的点,由此只有两个点。
点评:该题分析较为复杂,主要考查学生对二次函数与直角坐标系各坐标交点以及线上动点与固定点所形成图形面积的计算应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,等边中,BC∥轴,且BC=,顶点A在抛物线上运动.

(1)当顶点A运动至与原点重合时,顶点C是否在该抛物线上?
(2)在运动过程中有可能被轴分成两部分,当上下两部分的面积之比为1:8(即)时,求顶点A的坐标;
(3)在运动过程中,当顶点B落在坐标轴上时,直接写出顶点C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,O是坐标原点,直角梯形AOCD的顶点A的坐标为
(0,),点D的坐标为(1,),点C轴的正半轴上,过点O且以点D为顶点的抛物线经过点C,点PCD的中点.

(1)求抛物线的解析式及点P的坐标;
(2) 在轴右侧的抛物线上是否存在点Q,使以Q为圆心的圆同时与轴、直线OP相切.若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由;
(3)点M为线段OP上一动点(不与O点重合),过点OMD的圆与轴的正半轴交于点N.求证:OM+ON为定值.
(4)在轴上找一点H,使∠PHD最大.试求出点H的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线 经过A(2,0). 设顶点为点P,与x轴的另一交点为点B

(1)求b的值和点PB的坐标;
(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数yax2bx+c(a≠0)的图象如图,则下列结论中正确的是
A.ac>0            B.当x>1时,yx的增大而增大
C.2ab=1          D.方程ax2bx+c=0有一个根是x=3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点在二次函数的图象上,若
的大小关系为:  .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.

(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?

查看答案和解析>>

同步练习册答案