精英家教网 > 初中数学 > 题目详情
如图,直角坐标系中,以AB为直径作半⊙P交y轴于M,以AB为一边作正方形ABCD.
(1)直接写出C、M两点的坐标.
(2)连CM,试判断直线CM是否与⊙P相切?说明你的理由.
(3)在x轴上是否存在一点Q,使△QMC周长最小?若存在,求出Q坐标及最小周长;若不存在,请说明理由.

【答案】分析:(1)因为ABCD为正方形,且边长为10,所以易得C点坐标;连接PM,根据P点坐标和半径求OM可得M点坐标.
(2)根据CM、PM、PC的长判定△PCM为直角三角形,得∠PMC=90°,从而判断相切.或证△PCM≌△PCB得证.
(3)因CM长度固定,要使△QMC周长最小,只需PM+PC最小.作M关于x轴的对称点M′,连接CM′,交x轴于Q点,根据对称性及两点之间线段最短说明存在Q点.
解答:解:(1)∵A(-2,0),B(8,0),
∴AB=10.
∵四边形ABCD为正方形,
∴BC=AB=10,
∴C(8,10).
连MP,PC;
在Rt△OPM中,OP=3,MP=5,
∴OM=4,即M(0,4).

(2)CM与⊙P相切.
理由:Rt△CBP中,CB=10,BP=5,
∴CP2=125.
△CEM中,EM=6,CE=8,
∴CM2=100.
∵100+25=125,
∴△CMP中,CM2+MP2=CP2
∴∠CMP=90°.
即:PM⊥CM.
∴CM与⊙P相切.

(3)△QMC中,CM恒等于10,要使△QMC周长最小,即要使MQ+QC最小.
故作M关于x轴对称点M’,连CM’交x轴于点Q,连MQ,此时,△QMC周长最小.
∵C(8,10),M'(0,-4),
设直线CM':y=kx+b(k≠0)





∴Q(,0).
∵x轴垂直平分MM’,
∴QM=QM',
∴MQ+QC=M'Q+QC=M'C.
△CEM'中,CE=8,EM'=14

∴△QMC周长最小值为
∴存在符合题意的点Q,且
此时△QMC周长最小值为
点评:此题考查了坐标系内求点的坐标、切线的判定、利用作图求最小值等知识点,综合性很强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角坐标系中,△ABC的顶点都在网格点上,其中,A点坐标为(2,-1),则△ABC的面积为
 
平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角坐标系中,已知点A(3,0),B(t,0)(0<t<
32
),以AB为边在x轴上方作正方形ABCD,点E是直线OC与正方形ABCD的外接圆除点C以外的另一个交点,连接AE与BC相交于点F.
(1)求证:△OBC≌△FBA;?
(2)一抛物线经过O、F、A三点,试用t表示该抛物线的解析式;?
(3)设题(2)中抛物线的对称轴l与直线AF相交于点G,若G为△AOC的外心,试求出抛物线的解析式;?
(4)在题(3)的条件下,问在抛物线上是否存在点P,使该点关于直线AF的对称点在x轴上精英家教网?若存在,请求出所有这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在如图平面直角坐标系中,△ABC三个顶点A、B、C的坐标分别为A(2,-1),B(1,-3),C(4,-4),
请解答下列问题:
(1)把△ABC向左平移4个单位,再向上平移3个单位,恰好得到△A1B1C1试写出△A1B1C1三个顶点的坐标;
(2)在直角坐标系中画出△A1B1C1
(3)求出线段AA1的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角坐标系中,△ABC的顶点都在网格点上,C点坐标为(1,2),原来△ABC各个顶点纵坐标不变,横坐标都增加2,所得的三角形面积是
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

在如图的直角坐标系中,将△ABC平移后得到△A′B′C′,它们的个顶点坐标如表所示:
△ABC A(a,0) B(3,0) C(5,5)
△A′B′C′ A′(4,2) B′(7,b) C′(c,d)
(1)观察表中各对应点坐标的变化,并填空:△ABC向
平移
4
4
个单位长度,再向
平移
2
2
个单位长度可以得到△A′B′C′;
(2)在坐标系中画出△ABC及平移后的△A′B′C′;
(3)求出△A′B′C′的面积.

查看答案和解析>>

同步练习册答案