精英家教网 > 初中数学 > 题目详情
精英家教网如图,边长为1的正方形OABC的顶点A、C在坐标轴上,顶点O与原点重合,顶点B在第一象限,则该正方形绕点O逆时针旋转45°后,B点的坐标为
 
分析:连接OB,边长为1的正方形OABC中,∠BOC=45°,该正方形绕点O逆时针旋转45°后,点B在y轴正半轴上,横坐标为0,纵坐标即为OB的长,利用勾股定理,即可得出;
解答:精英家教网解:如图,连接OB,
∵四边形OABC是正方形,边长为1,
∴∠BOC=45°,OB=
2

∵该正方形绕点O逆时针旋转45°,
∴点B在y轴的正半轴上,
∴横坐标为0,纵坐标即为OB的长,
∴B点的坐标为(0,
2
).
故答案为:(0,
2
).
点评:本题主要考查了坐标与图形变化-旋转,注意:图形旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案