精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点E在AD上,EC平分∠BED.

(1)试判断△BEC是否为等腰三角形,请说明理由?
(2)若AB=1,∠ABE=45°,求BC的长;
(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.

【答案】
(1)

解:△BEC是否为等腰三角形,理由如下:

∵AD∥BC,

∴∠DEC=∠BCE,

∵∠DEC=∠BEC,

∴∠BEC=∠BCE,

∴△BCE是等腰三角形


(2)

解:

∵在Rt△ABE中,∠ABE=45°,

∴∠AEB=∠ABE=45°,

∴AB=AE=1.

∴BE=

∴BC=


(3)

解:四边形BCFE是菱形,理由如下:

如图,∵△FCE与△BEC关于CE的中点O成中心对称,

∴OB=OF,OE=OC,

∴四边形BCFE是平行四边形,

又∵BC=BE,

∴四边形BCFE是菱形.


【解析】(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.
(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.
(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出BCFE是菱形.
【考点精析】解答此题的关键在于理解中心对称及中心对称图形的相关知识,掌握如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题满分8分)某种电子产品共件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为

(1)该批产品有正品 件;

(2)如果从中任意取出件,利用列表或树状图求取出件都是正品的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABP中,CBP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;

(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AGAB=12,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距216千米,甲、乙分别在AB两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。.

1甲、乙同时出发,背向而行,问几小时后他们相距351千米?

2甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?

3甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?

4甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:(a﹣1)(a+1)﹣(a﹣1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合并同类项:4a2+3b2+2ab﹣4a2﹣6b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正确结论的个数是(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商有6筐苹果,以每筐20千克为主,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:3,﹣22,﹣114,这6筐苹果共有多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆M经过原点O,直线x轴、y轴分别相交于AB两点.

(1)求出A,B两点的坐标;

(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;

(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案