精英家教网 > 初中数学 > 题目详情
(2013•丽水)如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则
AB
AE
=
3
+1
2
3
+1
2
分析:根据菱形的性质可得出∠BAE=30°,∠B=45°,过点E作EM⊥AB于点M,设EM=x,则可得出AB、AE的长度,继而可得出
AB
AE
的值.
解答:解:∵∠BAD=135°,∠EAG=75°,四边形ABCD与四边形AEFG都是菱形,
∴∠B=180°-∠BAD=45°,∠BAE=∠BAC-∠EAC=30°,
过点E作EM⊥AB于点M,设EM=x,
在Rt△AEM中,AE=2EM=2x,AM=
3
x,
在Rt△BEM中,BM=x,
AB
AE
=
AM+BM
AE
=
3
+1
2

故答案为:
3
+1
2
点评:本题考查了菱形的性质及解直角三角形的知识,属于基础题,关键是掌握菱形的对角线平分一组对角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•丽水)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是
15
15

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,点P是反比例函数y=
k
x
(k<0)图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=
5

(1)k的值是
-4
-4

(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是
0<a<2或
-11-
33
2
<a<
-11+
33
2
0<a<2或
-11-
33
2
<a<
-11+
33
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段BD上;
     ②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.

查看答案和解析>>

同步练习册答案