精英家教网 > 初中数学 > 题目详情
某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(1)y=(X-20)(-2x+80)
=-2x2+120x-1600;

(2)方法一:
y=-2x2+120x-1600
=-2(x2-60x)-1600
=-2(x-30)2+200;
∴当x=30时,y最大=200;
方法二:-
b
2a
=30,
4ac-b2
4a
=200.
∴当x=30时,y最大=200.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面
40
3
米,求水流下落点B离墙距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.
(1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交与A,B两点,与y轴交与点C,已知点A的坐标为(-2,0),sin∠ABC=
2
5
5
,点D是抛物线的顶点,直线DC交x轴于点E.
(1)求抛物线的解析式及其顶点D的坐标;
(2)在直线CD上是否存在一点Q,使以B,C,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由;
(3)点P是直线y=2x-4上一点,过点P作直线PM垂直于直线CD,垂足为M,若∠MPO=75°,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:
x(万元)012
y11.51.8
(1)根据上表,求y关于x的函数关系式;
(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;
(3)从上面的函数关系式中,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种______棵橘子树,橘子总个数最多.

查看答案和解析>>

同步练习册答案