【题目】在边长为2的正方形ABCD中,P为AB上一动点,E为AD中点,PE交CD延长线于Q,过E作EF⊥PQ交BC延长线于F,则下列结论:①△APE△DQE;②PQ=EF;③当P为AB中点时,CF= ;④若H为QC中点,当P从A移动到B时,线段EH扫过的面积为 .其中正确的是( )
A.①②
B.①②④
C.②③④
D.①②③
【答案】B
【解析】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠A=∠B=90°,
∵∠A=∠EDQ, AE=ED,∠AEP=∠DEQ,
∴△AEP≌△DEQ,故①正确;
②作PG⊥CD于G,EM⊥BC于M,EM与PG交于点N,
∴∠PGQ=∠EMF=90°.
∵EF⊥PQ,
∴∠PEF=90°,即∠PEN+∠NEF=90°,
∵∠NPE+∠NEP=90°,
∴∠NPE=∠NEF,
∵四边形 ABCD 是正方形,∴PG=EM.
在△EFM 和△PQG中,
∠PGQ=∠EMF , PG = ME,∠NPE=∠NEF,
∴△EFM≌△PQG,∴EF=PQ,故②正确
③连结QF,由PG⊥CD,且PE=EQ(由△AEP≌△DEQ可得),
则QF=PF,
则PB2+BF2=QC2+CF2 ,
设CF=x,列出方程得,(2+x)2+12=32+x2 , 解得x=1,故③错误;
④当P在A点时,Q与D重合,QC中点H在DC中点S处,当P移动到B点时,QC中点H与D重合,故EH扫过的部分就为△ESD的面积为 ×ED×DS= ×1×1= ,故④正确.故选B.
①根据正方形的性质易得∠A=∠EDQ,再由对顶角相等,中点的定义即可证得全等;②需要构造全等三角形;③由三线合一可证得PF=QF,再由勾股定理列方程求解;④CD的中点始终在CD边上,则EH扫过的部分是一个三角形,由DE⊥CD可得DE为该三角形的高,根据点P的初始位置和终点可以找出点H的初始位置和终点,则它们的距离即H所走过的路程即为三角形的底,再求面积即可.
科目:初中数学 来源: 题型:
【题目】如图,有下列条件:①BD=DC,AB=AC;②∠ADB=∠ADC,∠B=∠C;③∠B=∠C,∠BAD=∠CAD;④∠B=∠C,BD=DC其中,不能证明△ABD≌△ACD的是_____(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学、外语、语文及其他学科中,某校七年级开展了“同学们最喜欢哪门学科”的调查(该校七年级共有200人,每人只能选一项).
(1)调查的问题是什么?调查的对象是谁?
(2)在被调查的200名学生中,有40人最喜欢语文,60人最喜欢数学,80人最喜欢外语,其余的人选择其他.请把七年级的学生最喜欢某学科的人数及其占学生总数的百分比填入下表:
语文 | 外语 | 数学 | 其他 | |
人数 | ||||
占学生总数的百分比 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.
(1)求∠ABC的度数;
(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).
(参考数据: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点F在线段DE上,且EF=2DF,过点C的直线CG交OA的延长线于点G,且∠CGO=∠CDE.
(1)求证:CG与弧AB所在圆相切.
(2)当点C在弧AB上运动时,△CFD的三条边是否存在长度不变的线段?若存在,求出该线段的长度;若不存在,说明理由.
(3)若∠CGD=60°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】深圳市民中心广场上有旗杆如图①所示,某学校数学兴趣小组测量了该旗杆的高度.如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为 45°,1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx-3经过A(-1,0)、B(3,0)两点,与y轴交于C点,
(1)求抛物线的解析式;
(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标;
(3)如图②,直线y= x+ 交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒钟2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少,若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知直线 ( )分别交反比例函数 和 在第一象限的图象于点 , ,过点 作 轴于点 ,交 的图象于点 ,连结 .若 是等腰三角形,则 的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com