·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹Øϵ£¬¿ÉµÃA¡¢Bµã×ø±ê£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃCµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÃæ»ýµÄºÍ²î£¬¿ÉµÃPµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ·´±ÈÀýº¯Êý½âÎöʽ£»
£¨3£©·ÖÀàÌÖÂÛ£ºµ±AP=PBʱ£¬µ±AB=APʱ£¬µ±AB=BPʱ£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃPµã×ø±ê£¬ÔÙ¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=-2£¬¼´Bµã×ø±êÊÇ£¨0£¬-2£©£¬
µ±y=0ʱ£¬-$\frac{1}{3}$x-2-0£¬½âµÃx=-6£¬¼´Aµã×ø±êÊÇ£¨-6£¬0£©£¬
x2-7x-8=0£¬
Òòʽ·Ö½â£¬µÃ£¨x-8£©£¨x+1£©=0£¬
½âµÃx=8»òx=-1£®
Cµã×ø±êΪ£¨0£¬8£©£®
ÉèÖ±Ïßl2µÄ½âÎöʽΪy=kx+b£¬Ö±Ïßl2¹ýA¡¢CÁ½µã£¬µÃ
$\left\{\begin{array}{l}{b=8}\\{-6k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=8}\\{k=\frac{4}{3}}\end{array}\right.$£®
¹ÊÖ±Ïßl2µÄ½âÎöʽΪy=$\frac{4}{3}$x+8£»
£¨2£©ÉèP£¨a£¬b£©£¬ÓÉÃæ»ýµÄºÍ²î£¬µÃ
S¡÷ABP=S¡÷ABC-S¡÷BCP£¬
¼´$\frac{1}{2}$¡Á[8-£¨-2£©]¡Á|-6|-$\frac{1}{2}$[8-£¨-2£©]|x|=20£®
½âµÃx=-2£¬x=2£¨²»·ûºÏÌâÒâÒªÉáÈ¥£©£¬
b=$\frac{4}{3}$¡Á£¨-2£©+8=$\frac{16}{3}$£¬
¼´P£¨-2£¬$\frac{16}{3}$£©£®
Éè¹ýµãPµÄ·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{{k}_{1}}{x}$£¬½«Pµã×ø±ê´úÈ룬µÃ
k1=-2¡Á$\frac{16}{3}$=-$\frac{32}{3}$£¬
¹Ê¹ýµãPµÄ·´±ÈÀýº¯Êý½âÎöʽΪy=-$\frac{\frac{32}{3}}{x}$£»
£¨3£©¢Ùµ±AP=PBʱ£¬PÓëCµãÖغϣ¬¼´t=0£¬
¢Úµ±AB=APʱ£¬AP=AB=$\sqrt{£¨-6£©^{2}+£¨0+2£©^{2}}$=2$\sqrt{10}$£¬PC=AC-AP=10-2$\sqrt{10}$£»
¢Ûµ±AB=BPʱ£¬ÉèP£¨a£¬$\frac{4}{3}$a+8£©£¬a2+£¨$\frac{4}{3}$a+8+2£©2=£¨-6£©2+22£¬
»¯¼ò£¬µÃ
5a2+48a+108=0£®½âµÃa=-6.2£¨²»·ûºÏÌâÒâÒªÉáÈ¥£©a=-3.4£¬
$\frac{4}{3}$a+8=$\frac{52}{15}$£¬¼´P£¨-$\frac{17}{5}$£¬$\frac{52}{15}$£©£®
PC=$\sqrt{£¨-\frac{17}{5}£©^{2}+£¨8-\frac{52}{15}£©^{2}}$=$\frac{17}{3}$£¬
¼´t=$\frac{17}{3}$£®
×ÛÉÏËùÊö£ºt=0£¬t=10-2$\sqrt{10}$£¬t=$\frac{17}{3}$ÒÔA¡¢B¡¢PΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁ˺¯ÊýÖµÓë×Ô±äÁ¿µÄ¶ÔÓ¦¹Øϵ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬£¨2£©ÀûÓÃÃæ»ýµÄºÍ²îµÃ³öPµã×ø±êÊǽâÌâ¹Ø¼ü£»£¨3£©·ÖÀàÌÖÂÛÊǽâÌâ¹Ø¼ü£¬ÒÔ·ÀÒÅ©£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 36¡ã | B£® | 54¡ã | C£® | 72¡ã | D£® | 90¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2 | B£® | 4 | C£® | 8 | D£® | 16 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Á½Ìõ¶Ô½ÇÏß»¥Ïà´¹Ö±ÏàµÈ | B£® | Ò»×é¶Ô±ßÏàµÈ£¬Ò»×é¶Ô½ÇÏàµÈ | ||
C£® | Ò»×é¶Ô±ßƽÐУ¬ÁíÒ»×é¶Ô±ßÏàµÈ | D£® | Ò»×é¶Ô±ßƽÐУ¬Ò»×é¶Ô½ÇÏàµÈ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{x}^{2}}{2}$ | B£® | $\frac{x}{x+1}$ | C£® | $\frac{x}{2}$+y | D£® | $\frac{x}{3}$+1 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com