19£®ÒÑÖªÖ±Ïßl1µÄ½âÎöʽΪy=-$\frac{1}{3}$x-2£¬ÇÒÓëxÖᣬyÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬µãCÔÚyÖáÉÏ£¬ÇÒµãCµÄ×Ý×ø±êΪx2-7x-8=0ÖнϴóµÄ½â£¬Ö±Ïßl2¹ýA¡¢CÁ½µã£®
£¨1£©ÇóÖ±Ïßl2µÄ½âÎöʽ£»
£¨2£©Èô¶¯µãPÔÚÏ߶ÎACÉÏ£¬´ÓCµã³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËٶȣ¬ÏòµãAÔ˶¯£¬Ô˶¯Ê±¼äΪtÃ룬Á¬½ÓBP£¬µ±S¡÷ABP=20ʱ£¬Çó¹ýµãPµÄ·´±ÈÀýº¯Êý½âÎöʽ£»
£¨3£©ÔÚ£¨2£©ÎÊÖÐPµãÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚµãP£¬Ê¹ÒÔA¡¢B¡¢PΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³ötÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹Øϵ£¬¿ÉµÃA¡¢Bµã×ø±ê£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃCµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÃæ»ýµÄºÍ²î£¬¿ÉµÃPµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃ·´±ÈÀýº¯Êý½âÎöʽ£»
£¨3£©·ÖÀàÌÖÂÛ£ºµ±AP=PBʱ£¬µ±AB=APʱ£¬µ±AB=BPʱ£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃPµã×ø±ê£¬ÔÙ¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=-2£¬¼´Bµã×ø±êÊÇ£¨0£¬-2£©£¬
µ±y=0ʱ£¬-$\frac{1}{3}$x-2-0£¬½âµÃx=-6£¬¼´Aµã×ø±êÊÇ£¨-6£¬0£©£¬
x2-7x-8=0£¬
Òòʽ·Ö½â£¬µÃ£¨x-8£©£¨x+1£©=0£¬
½âµÃx=8»òx=-1£®
Cµã×ø±êΪ£¨0£¬8£©£®
ÉèÖ±Ïßl2µÄ½âÎöʽΪy=kx+b£¬Ö±Ïßl2¹ýA¡¢CÁ½µã£¬µÃ
$\left\{\begin{array}{l}{b=8}\\{-6k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=8}\\{k=\frac{4}{3}}\end{array}\right.$£®
¹ÊÖ±Ïßl2µÄ½âÎöʽΪy=$\frac{4}{3}$x+8£»
£¨2£©ÉèP£¨a£¬b£©£¬ÓÉÃæ»ýµÄºÍ²î£¬µÃ
S¡÷ABP=S¡÷ABC-S¡÷BCP£¬
¼´$\frac{1}{2}$¡Á[8-£¨-2£©]¡Á|-6|-$\frac{1}{2}$[8-£¨-2£©]|x|=20£®
½âµÃx=-2£¬x=2£¨²»·ûºÏÌâÒâÒªÉáÈ¥£©£¬
b=$\frac{4}{3}$¡Á£¨-2£©+8=$\frac{16}{3}$£¬
¼´P£¨-2£¬$\frac{16}{3}$£©£®
Éè¹ýµãPµÄ·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{{k}_{1}}{x}$£¬½«Pµã×ø±ê´úÈ룬µÃ
k1=-2¡Á$\frac{16}{3}$=-$\frac{32}{3}$£¬
¹Ê¹ýµãPµÄ·´±ÈÀýº¯Êý½âÎöʽΪy=-$\frac{\frac{32}{3}}{x}$£»
£¨3£©¢Ùµ±AP=PBʱ£¬PÓëCµãÖغϣ¬¼´t=0£¬
¢Úµ±AB=APʱ£¬AP=AB=$\sqrt{£¨-6£©^{2}+£¨0+2£©^{2}}$=2$\sqrt{10}$£¬PC=AC-AP=10-2$\sqrt{10}$£»
¢Ûµ±AB=BPʱ£¬ÉèP£¨a£¬$\frac{4}{3}$a+8£©£¬a2+£¨$\frac{4}{3}$a+8+2£©2=£¨-6£©2+22£¬
»¯¼ò£¬µÃ
5a2+48a+108=0£®½âµÃa=-6.2£¨²»·ûºÏÌâÒâÒªÉáÈ¥£©a=-3.4£¬
$\frac{4}{3}$a+8=$\frac{52}{15}$£¬¼´P£¨-$\frac{17}{5}$£¬$\frac{52}{15}$£©£®
PC=$\sqrt{£¨-\frac{17}{5}£©^{2}+£¨8-\frac{52}{15}£©^{2}}$=$\frac{17}{3}$£¬
¼´t=$\frac{17}{3}$£®
×ÛÉÏËùÊö£ºt=0£¬t=10-2$\sqrt{10}$£¬t=$\frac{17}{3}$ÒÔA¡¢B¡¢PΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓÃÁ˺¯ÊýÖµÓë×Ô±äÁ¿µÄ¶ÔÓ¦¹Øϵ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬£¨2£©ÀûÓÃÃæ»ýµÄºÍ²îµÃ³öPµã×ø±êÊǽâÌâ¹Ø¼ü£»£¨3£©·ÖÀàÌÖÂÛÊǽâÌâ¹Ø¼ü£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺£¨7+$\sqrt{7}$£©2-£¨7-$\sqrt{7}$£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ÉäÏßOA±íʾ±±Æ«¶«35¡ã£¬ÉäÏßOB±íʾÄÏÆ«¶«70¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬BDƽ·Ö¡ÏABC£¬DEƽ·Ö¡ÏADB£¬ÇÒDE¡ÎBC£®
£¨1£©ÕÒ³öͼÖÐËùÓеĵÈÑüÈý½ÇÐΣ¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨2£©Èô¡ÏA=90¡ã£¬AE=1£¬ÇóBCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¶þ´Îº¯Êýy=x2+2x+c¾­¹ýµã£¨-1£¬3£©£¬ÔòcµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ¡÷ABCÖУ¬¡ÏA=36¡ã£¬AB=AC£¬BFƽ·Ö¡ÏABC£¬EÊÇAFµÄÖе㣬DE¡ÍAC½»ABÓÚD£¬Á¬½ÓDC½»BFÓÚP£¬¡ÏDPBµÄ¶ÈÊýÊÇ£¨¡¡¡¡£©
A£®36¡ãB£®54¡ãC£®72¡ãD£®90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬¡÷ABCÖУ¬A£¨2£¬4£©ÒÔÔ­µãΪλËÆÖÐÐÄ£¬½«¡÷ABCËõСºóµÃµ½¡÷DEF£¬ÈôD£¨1£¬2£©£¬¡÷DEFµÄÃæ»ýΪ4£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2B£®4C£®8D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÄÜÅж¨Ò»¸öËıßÐÎÊÇƽÐÐËıßÐεÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®Á½Ìõ¶Ô½ÇÏß»¥Ïà´¹Ö±ÏàµÈB£®Ò»×é¶Ô±ßÏàµÈ£¬Ò»×é¶Ô½ÇÏàµÈ
C£®Ò»×é¶Ô±ßƽÐУ¬ÁíÒ»×é¶Ô±ßÏàµÈD£®Ò»×é¶Ô±ßƽÐУ¬Ò»×é¶Ô½ÇÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐʽ×ÓÊÇ·ÖʽµÄÊÇ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{2}$B£®$\frac{x}{x+1}$C£®$\frac{x}{2}$+yD£®$\frac{x}{3}$+1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸