【题目】如图,已知顶点为M(,)的抛物线过点D(3,2),交x轴于A,B两点,交y轴于点C,点P是抛物线上一动点.
(1)求抛物线的解析式;
(2)当点P在直线AD上方时,求△PAD面积的最大值,并求出此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q'.是否存在点P,使Q'恰好落在x轴上?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1);(2)最大值为4,点P(1,3);(3)存在,点P的坐标为(,).
【解析】
(1)用待定系数法求解即可;
(2)由△PAD面积S=S△PHA+S△PHD,即可求解;
(3)结合图形可判断出点P在直线CD下方,设点P的坐标为(a,),当P点在y轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.
解:(1)设抛物线的表达式为:y=a(x﹣h)2+k=a(x﹣)2+,
将点D的坐标代入上式得:2=a(3﹣)2+,
解得:a=﹣,
∴抛物线的表达式为:;
(2)当x=0时,y=﹣x2+x+2=2,
即点C坐标为(0,2),
同理,令y=0,则x=4或﹣1,故点A、B的坐标分别为:(﹣1,0)、(4,0),
过点P作y轴的平行线交AD于点H,
由点A、D的坐标得,直线AD的表达式为:y=(x+1),
设点P(x,﹣x2+x+2),则点H(x,x+),
则△PAD面积为:
S=S△PHA+S△PHD=×PH×(xD﹣xA)=×4×(﹣x2+x+2﹣x)=﹣x2+2x+3,
∵﹣1<0,故S有最大值,
当x=1时,S有最大值,则点P(1,3);
(3)存在满足条件的点P,显然点P在直线CD下方,设直线PQ交x轴于F,点P的坐标为(a,﹣a2+a+2),
当P点在y轴右侧时(如图2),CQ=a,
PQ=2﹣(﹣a2+a+2)=a2﹣a,
又∵∠CQ′O+∠FQ′P=90°,∠COQ′=∠Q′FP=90°,
∴∠FQ′P=∠OCQ′,
∴△COQ′∽△Q′FP,
,即,
∴Q′F=a﹣3,
∴OQ′=OF﹣Q′F=a﹣(a﹣3)=3,CQ=CQ′=,
此时a=,点P的坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣1经过A(﹣0.5,0),B(﹣4,﹣3)两点,交y轴于点C.
(1)求抛物线的表达式;
(2)若点P是抛物线对称轴上一动点,求使得PA+PC最小时P点的坐标;
(3)直线BC交x轴于点D,连结AC,若点P是y轴上一动点,且点P不与点C重合,是否存在点P,使得以P,B,C为顶点的三角形与△ACD相似?若存在,确定点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合图中相关信息解答下列问题:
(1)扇形统计图中三等奖所在扇形的圆心角的度数是______度;
(2)请将条形统计图补全;
(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:AEF≌△DEB;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=4,∠CAB=30°,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】港口 A、B、C 依次在同一条直线上,甲、乙两艘船同时分别从 A、B两港出发,匀速驶向 C 港,甲、乙两船与 B 港的距离 y(海里)与行驶时间 x 时)之间的函数关系如图所示,则下列说法错误的是( )
A.甲船平均速度为 60 海里/时B.乙船平均速度为 30 海里/时
C.甲、乙两船在途中相遇两次D.A、C 两港之间的距离为 120 海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,已知∠ACB=90°,AC=BC=4,若点E在△ABC内部运动,且满足AE2=BE2+2CE2,则点E的运动路径长是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为元/个,售价为元/个().下面是门店在销售一段时间后销售情况的反馈:
①若每个硒鼓按定价30元的8折出售,可获的利润;
②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.
(1)求的值,并写出该品牌硒鼓每月的销售量(个)与售价(元/个)之间的函数关系式,并注明自变量的取值范围;
(2)求该耗材店销售这种硒鼓每月获得的利润(元)与售价(元/个)之间的函数关系式,并求每月获得的最大利润;
(3)在新冠肺炎流行期间,这种硒鼓的进价降低为元/个,售价为元/个().耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润(元)随售价(元/个)的增大而增大,请直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com