精英家教网 > 初中数学 > 题目详情

【题目】如图,过反比例函数y= (x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2 , 比较它们的大小,可得(
A.S1>S2
B.S1=S2
C.Sl<S2
D.大小关系不能确定

【答案】B
【解析】解:由反比例函数系数k的几何意义可得:SAOC=SBOD; 又SAOC=SAEO+SOEC , SBOD=SOEC+S梯形CEBD
所以SAOE=S梯形CEBD , 即S1=S2
故选B.
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.

(1)分别求出A与C,A与D间的距离AC和AD(如果运算结果有根号,请保留根号).

(2)已知距离观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将平行四边形纸片ABCD按如图方式折叠,使点CA重合,点D落到D′处,折痕为EF

1)求证:△ABE≌△AD′F

2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列诗句表述的是随机事件的是(    )

A.离离原上草,一岁一枯荣B.危楼高百尺,手可摘星辰

C.会当凌绝顶,一览众山小D.东边日出西边雨,道是无晴却有晴

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a0)、二次函数y=ax2+bx和反比例函数y=(k0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是(  )

A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F是点E关于BD的对称点,EF交BD于点P,若BP=x,△OEF的面积为y,则y与x之间的函数图象大致为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若m23=26 , 则m等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:
(1) +|1﹣ |﹣π0+
(2)( + )× ﹣(4 ﹣3 )÷2

查看答案和解析>>

同步练习册答案